scholarly journals A Modeling Study of the Effects of Vertical Wind Shear on the Raindrop Size Distribution in Typhoon Nida (2016)

2019 ◽  
Vol 124 (12) ◽  
pp. 6501-6517
Author(s):  
Lin Deng ◽  
Wenhua Gao ◽  
Yihong Duan
2016 ◽  
Vol 33 (9) ◽  
pp. 1949-1966 ◽  
Author(s):  
Makoto Aoki ◽  
Hironori Iwai ◽  
Katsuhiro Nakagawa ◽  
Shoken Ishii ◽  
Kohei Mizutani

AbstractRainfall velocity, raindrop size distribution (DSD), and vertical wind velocity were simultaneously observed with 2.05- and 1.54-μm coherent Doppler lidars during convective and stratiform rain events. A retrieval method is based on identifying two separate spectra from the convolution of the aerosol and precipitation Doppler lidar spectra. The vertical wind velocity was retrieved from the aerosol spectrum peak and then the terminal rainfall velocity corrected by the vertical air motion from the precipitation spectrum peak was obtained. The DSD was derived from the precipitation spectrum using the relationship between the raindrop size and the terminal rainfall velocity. A comparison of the 1-min-averaged rainfall velocity from Doppler lidar measurements at a minimum range and that from a collocated ground-based optical disdrometer revealed high correlation coefficients of over 0.89 for both convective and stratiform rain events. The 1-min-averaged DSDs retrieved from the Doppler lidar spectrum using parametric and nonparametric methods are also in good agreement with those measured with the optical disdrometer with a correlation coefficient of over 0.80 for all rain events. To retrieve the DSD, the parametric method assumes a mathematical function for the DSD and the nonparametric method computes the direct deconvolution of the measured Doppler lidar spectrum without assuming a DSD function. It is confirmed that the Doppler lidar can retrieve the rainfall velocity and DSD during relatively heavy rain, whereas the ratio of valid data significantly decreases in light rain events because it is extremely difficult to separate the overlapping rain and aerosol peaks in the Doppler spectrum.


2016 ◽  
Vol 9 (7) ◽  
pp. 3145-3163 ◽  
Author(s):  
François Mercier ◽  
Aymeric Chazottes ◽  
Laurent Barthès ◽  
Cécile Mallet

Abstract. This paper presents a novel framework for retrieving the vertical raindrop size distribution (DSD) and vertical wind profiles during light rain events. This is also intended as a tool to better characterize rainfall microphysical processes. It consists in coupling K band Doppler spectra and ground disdrometer measurements (raindrop fluxes) in a 2-D numerical model propagating the DSD from the clouds to the ground level. The coupling is done via a 4-D-VAR data assimilation algorithm. As a first step, in this paper, the dynamical model and the geometry of the problem are quite simple. They do not allow the complexity implied by all rain microphysical processes to be encompassed (evaporation, coalescence breakup and horizontal air motion are not taken into account). In the end, the model is limited to the fall of droplets under gravity, modulated by the effects of vertical winds. The framework is thus illustrated with light, stratiform rain events. We firstly use simulated data sets (data assimilation twin experiment) to show that the algorithm is able to retrieve the DSD profiles and vertical winds. It also demonstrates the ability of the algorithm to deal with the atmospheric turbulence (broadening of the Doppler spectra) and the instrumental noise. The method is then applied to a real case study which was conducted in the southwest of France during the autumn 2013. The data set collected during a long, quiet event (6 h duration, rain rate between 2 and 7 mm h−1) comes from an optical disdrometer and a 24 GHz vertically pointing Doppler radar. We show that the algorithm is able to reproduce the observations and retrieve realistic DSD and vertical wind profiles, when compared to what could be expected for such a rain event. A goal for this study is to apply it to extended data sets for a validation with independent data, which could not be done with our limited 2013 data. Other data sets would also help to parameterize more processes needed in the model (evaporation, coalescence/breakup) to apply the algorithm to convective rain and to evaluate the adequacy of the model's parameterization.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 348
Author(s):  
Ningkun Ma ◽  
Liping Liu ◽  
Yichen Chen ◽  
Yang Zhang

A squall line is a type of strongly organized mesoscale convective system that can cause severe weather disasters. Thus, it is crucial to explore the dynamic structure and hydrometeor distributions in squall lines. This study analyzed a squall line over Guangdong Province on 6 May 2016 that was observed using a Ka-band millimeter-wave cloud radar (CR) and an S-band dual-polarization radar (PR). Doppler spectral density data obtained by the CR were used to retrieve the vertical air motions and raindrop size distribution (DSD). The results showed the following: First, the CR detected detailed vertical profiles and their evolution before and during the squall line passage. In the convection time segment (segment B), heavy rain existed with a reflectivity factor exceeding 35 dBZ and a velocity spectrum width exceeding 1.3 m s−1. In the PR detection, the differential reflectivity factor (Zdr) was 1–2 dB, and the large specific differential phase (Kdp) also represented large liquid water content. In the transition and stratiform cloud time segments (segments B and C), the rain stabilized gradually, with decreasing cloud tops, stable precipitation, and a 0 °C layer bright band. Smaller Kdp values (less than 0.9) were distributed around the 0 °C layer, which may have been caused by the melting of ice crystal particles. Second, from the CR-retrieved vertical air velocity, before squall line passage, downdrafts dominated in local convection and weak updrafts existed in higher-altitude altostratus clouds. In segment B, the updraft air velocity reached more than 8 m s−1 below the 0 °C layer. From segments C to D, the updrafts changed gradually into weak and wide-ranging downdrafts. Third, in the comparison of DSD values retrieved at 1.5 km and DSD values on the ground, the retrieved DSD line was lower than the disdrometer, the overall magnitude of the DSD retrieved was smaller, and the difference decreased from segments C to D. The standardized intercept parameter (Nw) and shape parameter (μ) of the DSD retrieved at 1.8 km showed good agreement with the disdrometer results, and the mass-weighted mean diameter (Dm) was smaller than that on the ground, but very close to the PR-retrieved Dm result at 2 km. Therefore, comparing with the DSD retrieved at around 2 km, the overall number concentration remained unchanged and Dm got larger on the ground, possibly reflecting the process of raindrop coalescence. Lastly, the average vertical profiles of several quantities in all segments showed that, first of all, the decrease of Nw and Dm with height in segments C and D was similar, reflecting the collision effect of falling raindrops. The trends were opposite in segment B, indicating that raindrops underwent intense mixing and rapid collision and growth in this segment. Then, PR-retrieved Dm profiles can verify the rationality of the CR-retrieved Dm. Finally, a vertical velocity profile peak generated a larger Dm especially in segments C and D.


2006 ◽  
Vol 21 (2) ◽  
pp. 125-148 ◽  
Author(s):  
Hyung Woo Kim ◽  
Dong Kyou Lee

Abstract A heavy rainfall event induced by mesoscale convective systems (MCSs) occurred over the middle Korean Peninsula from 25 to 27 July 1996. This heavy rainfall caused a large loss of life and property damage as a result of flash floods and landslides. An observational study was conducted using Weather Surveillance Radar-1988 Doppler (WSR-88D) data from 0930 UTC 26 July to 0303 UTC 27 July 1996. Dominant synoptic features in this case had many similarities to those in previous studies, such as the presence of a quasi-stationary frontal system, a weak upper-level trough, sufficient moisture transportation by a low-level jet from a tropical storm landfall, strong potential and convective instability, and strong vertical wind shear. The thermodynamic characteristics and wind shear presented favorable conditions for a heavy rainfall occurrence. The early convective cells in the MCSs initiated over the coastal area, facilitated by the mesoscale boundaries of the land–sea contrast, rain–no rain regions, saturated–unsaturated soils, and steep horizontal pressure and thermal gradients. Two MCSs passed through the heavy rainfall regions during the investigation period. The first MCS initiated at 1000 UTC 26 July and had the characteristics of a supercell storm with small amounts of precipitation, the appearance of a mesocyclone with tilting storm, a rear-inflow jet at the midlevel of the storm, and fast forward propagation. The second MCS initiated over the upstream area of the first MCS at 1800 UTC 26 July and had the characteristics of a multicell storm, such as a broken areal-type squall line, slow or quasi-stationary backward propagation, heavy rainfall in a concentrated area due to the merging of the convective storms, and a stagnated cluster system. These systems merged and stagnated because their movement was blocked by the Taebaek Mountain Range, and they continued to develop because of the vertical wind shear resulting from a low-level easterly inflow.


2013 ◽  
Vol 26 (21) ◽  
pp. 8513-8528 ◽  
Author(s):  
Megan S. Mallard ◽  
Gary M. Lackmann ◽  
Anantha Aiyyer

Abstract A method of downscaling that isolates the effect of temperature and moisture changes on tropical cyclone (TC) activity was presented in Part I of this study. By applying thermodynamic modifications to analyzed initial and boundary conditions from past TC seasons, initial disturbances and the strength of synoptic-scale vertical wind shear are preserved in future simulations. This experimental design allows comparison of TC genesis events in the same synoptic setting, but in current and future thermodynamic environments. Simulations of both an active (September 2005) and inactive (September 2009) portion of past hurricane seasons are presented. An ensemble of high-resolution simulations projects reductions in ensemble-average TC counts between 18% and 24%, consistent with previous studies. Robust decreases in TC and hurricane counts are simulated with 18- and 6-km grid lengths, for both active and inactive periods. Physical processes responsible for reduced activity are examined through comparison of monthly and spatially averaged genesis-relevant parameters, as well as case studies of development of corresponding initial disturbances in current and future thermodynamic conditions. These case studies show that reductions in TC counts are due to the presence of incipient disturbances in marginal moisture environments, where increases in the moist entropy saturation deficits in future conditions preclude genesis for some disturbances. Increased convective inhibition and reduced vertical velocity are also found in the future environment. It is concluded that a robust decrease in TC frequency can result from thermodynamic changes alone, without modification of vertical wind shear or the number of incipient disturbances.


Sign in / Sign up

Export Citation Format

Share Document