scholarly journals Geologic History of the Northern Portion of the South Pole-Aitken Basin on the Moon

2018 ◽  
Vol 123 (10) ◽  
pp. 2585-2612 ◽  
Author(s):  
M. A. Ivanov ◽  
H. Hiesinger ◽  
C. H. van der Bogert ◽  
C. Orgel ◽  
J. H. Pasckert ◽  
...  
Author(s):  
John J. W. Rogers ◽  
M. Santosh

As continents moved from Pangea to their present positions, they experienced more than 100 million years of geologic history. Compressive and extensional stresses generated by collision with continental and oceanic plates formed mountain belts, zones of rifting and strike-slip faulting, and magmatism in all of these environments. In this chapter we can only provide capsule summaries of this history for each of the various continents, but many of their salient features have been discussed as examples of tectonic processes in earlier chapters. The final section analyzes the breakup of Pangea as part of the latest cycle of accretion and dispersal of supercontinents. Because it involves continuation of this cycle into the future, it is necessarily very speculative. Figure 10.1 shows approximate patterns of movement of each continent from its position in Pangea to the present. The dominant feature of this pattern is northward movement of all continents except Antarctica, which has remained over the South Pole for more than 250 million years. Shortly after geologists recognized the concept of continental drift, this movement was referred to by the German word “Polflucht” (flight from the pole) because all of the continents were seen to be fleeing from the South Pole. The only continent that did not simply move northward was Eurasia, which essentially rotated clockwise and changed its orientation from north–south to east–west. Comparison of fig. 10.1 with fig. 8.12a (locations of continents shortly before the assembly of Gondwana) shows that the net effect of the last 580 million years of earth history has been a transfer of most continental crust from the southern hemisphere to the northern hemisphere. Accretion and compression against the southern margin of Eurasia constructed a series of mountain belts from the Pyrenees in the west to the numerous ranges of Southeast Asia in the east. This collision generated extensional and transtensional forces that opened rifts and pull-apart basins. Tectonic loading created foreland basins with sediment thicknesses of several kilometers. Opposite the area where the collision of India caused the most intense compression, the extensional basins are interspersed with mountain ranges that were lifted up intracontinentally. We divide the discussion of Eurasia into a section where compression dominates to the south (present orientation) of the former margin of Pangea and a section that describes processes within the landmass to the north.


Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


2014 ◽  
Vol 41 (8) ◽  
pp. 2738-2745 ◽  
Author(s):  
Makiko Ohtake ◽  
Kisara Uemoto ◽  
Yasuhiro Yokota ◽  
Tomokatsu Morota ◽  
Satoru Yamamoto ◽  
...  

2009 ◽  
Vol 36 (22) ◽  
Author(s):  
Ryosuke Nakamura ◽  
Tsuneo Matsunaga ◽  
Yoshiko Ogawa ◽  
Satoru Yamamoto ◽  
Takahiro Hiroi ◽  
...  
Keyword(s):  
The Moon ◽  

Author(s):  
Buddhadev Sarkar ◽  
Pabitra Kumar Mani

Aims: The Chandrayaan-2 aims to wave the Indian flag on the dark side (South Pole) of the Moon that had never been rendered by any country before. The mission had conducted to gather more scientific information about the Moon. There were three main components of the Chandrayann-2 spacecraft- an orbiter, a lander, and a rover, means to collect data for the availability of water in the South Pole of the Moon. Place and Duration of Study: The rover (Pragyan) was designed to operate for one Lunar day that is equivalent to 14 Earth days, whereas the orbiter is assumed to orbit the Moon for seven years instead of the previously planned for just one year. Overview: The Chandrayaan-2 spacecraft launched by India's heavy-lift rocket Geosynchronous Satellite Launch Vehicle-Mark III (GSLV MKIII) from the Satish Dhawan Space Center launch pad located on Sriharikota island of Andhra Prades. Unlike, Chandrayaan-1, this lunar mission aimed to perform a soft-landing on the South Pole of the Lunar surface and do scientific experiments with the help of the rover (Pragyan). Reason: The Chandrayaan-1, the first lunar mission of ISRO that detected water molecules on the Moon. The Chandrayaan-2 was a follow-on mission of Chandrayaan-1 to explore the presence of water molecules on the South Pole of the Moon. Conclusion: Although the orbiter fulfilled all of the command, unfortunately, the lander (Lander) lost its communication at the last moment to touch the Moon’s surface softly. Despite that, India again showed its potential in space missions. Chandrayaan- 2 was the most low budget lunar mission ever conducted by any space organization. The developing or even underdeveloped countries may come forward in their space program as ISRO is showing a convenient way in space missions.


2021 ◽  
Author(s):  
Marine Joulaud ◽  
Jessica Flahaut ◽  
Diego Urbina ◽  
Hemanth K. Madakashira ◽  
Gen Ito ◽  
...  

<p>Lunar volatiles, such as water, are a crucial resource for future exploration, and their exploitation should enable the use of the Moon as a platform for even more remote destinations. As water is most likely to be found in the form of ice at the lunar poles (where surface temperatures can be as low as 40K, i.e. below the H2O temperature of sublimation in vacuum, 110K), multiple upcoming missions target the south pole (SP) cold traps. PSRs (Permanently Shadowed Regions) are especially cold enough to capture and retain volatiles but present challenging access conditions (rough topography, low illumination, low temperatures, limited Earth visibility).</p><p>Funded by the EU program Horizon 2020, Space Applications Services developed the LUVMI-X rover (LUnar Volatiles Mobile Instrument eXtended), aimed at sampling and analysing lunar volatiles in the polar regions, including within a PSR. The LUVMI-X nominal payload includes an instrumented drill, the Volatiles Sampler (VS), along with a mass spectrometer, the Volatiles Analyser (VA), for surface and subsurface volatile detection and characterisation. A LIBS and a radiation detector are also included. Deployable and propellable surface science payloads are in development for inaccessible sites (e.g., some of the PSRs). This solar-powered rover has an autonomy of one or two Earth nights and can drill down to 20cm in the lunar regolith. The goal of this paper is to find suitable landing sites & traverses’ paths for this rover project, that are both scientifically interesting and technically reachable.</p><p>Available remote sensing imagery for the lunar SP was downloaded from the PDS or corresponding instruments’ websites and added into a Geographic Information System (GIS). LUVMI-X scientific objectives and technical specifications were then translated into a list of criteria and computed in our GIS using reclassifications, buffers, and intersections. Using our GIS, reclassified data were overlaid with different weights to define and rank areas meeting the compulsory criteria. A global analysis was led to select the landing sites, followed by a local analysis (based on higher resolution data) for the establishment of traverses.</p><p>The global GIS analysis allowed us to identify six regions of interest (ROI), which were compared with previous SP ROI from the literature (Lemelin, 2014; Flahaut, 2020). The identified ROI were further ranked based on areas and statistics on Sun and Earth visibilities, Diviner average surface temperatures, and H/water ice signatures (LPNS, LEND, M3).</p><p>A prime ROI located between Shackleton and the Shoemaker/Faustini ridge was selected for traverse analysis. Four landing ellipses of 2x2km were located and ranked inside the ROI. Way Points (WP) were then identified to include the following scientific interests in each traverse: a boulder casting shadows, a PSR to throw a propellable payload in, an accessible PSR to go into, etc. As several WP are possible, Earth visibility was used to select the best ones. WP were then connected by using slope maps (LOLA DEM at 5m/px: avoid slopes over 20°), Earth & Sun visibilities (avoid no-go zones) and the LROC NAC mosaics at 1m/px (avoid boulders and craters), constituting a tentative traverse.</p>


1988 ◽  
Vol 98 ◽  
pp. 146-146
Author(s):  
Michel Legrand
Keyword(s):  
The Moon ◽  

AbstractA region of approximately 270 000 km2 near the south pole of the Moon has not been mapped by spacecraft and Dr John Westfall of ALPO proposed the “Luna Incognita” programme in 1972 to try to cover this area. A brief summary of the problems of observing this limb region was given, together with the author’s experience using the T60 and 1-m telescopes at Pic du Midi.


1995 ◽  
Vol 21 ◽  
pp. 131-138 ◽  
Author(s):  
E. Mosley-Thompson ◽  
L. G. Thompson ◽  
J. F. Paskievitch ◽  
M. Pourchet ◽  
A. J. Gow ◽  
...  

This paper summarizes the 37 year history of net accumulation measurements at the geographic South Pole obtained by numerous investigators using a variety of techniques. These data lead to the conclusion that annual net snow accumulation has increased in the vicinity of South Pole Station (SPS) since 1955. The records were examined for evidence of a “station effect” and it is concluded that not all of the observed increase can be attributed to snow drift associated with the presence of the station. Furthermore, the accumulation increase at the South Pole appears consistent with increases observed at other locations on the East Antarctic Plateau, and in the Peninsula region as well. These data suggest that the recent accumulation increase at SPS may be regionally extensive over the East Antarctic Plateau.


2008 ◽  
Vol 35 (14) ◽  
Author(s):  
Paul D. Spudis ◽  
Ben Bussey ◽  
Jeffrey Plescia ◽  
Jean-Luc Josset ◽  
Stéphane Beauvivre
Keyword(s):  
The Moon ◽  

Sign in / Sign up

Export Citation Format

Share Document