scholarly journals Numerical Convergence of Shallow Convection Cloud Field Simulations: Comparison Between Double‐Moment Eulerian and Particle‐Based Lagrangian Microphysics Coupled to the Same Dynamical Core

2018 ◽  
Vol 10 (7) ◽  
pp. 1495-1512 ◽  
Author(s):  
Yousuke Sato ◽  
Shin‐ichiro Shima ◽  
Hirofumi Tomita
2013 ◽  
Vol 70 (9) ◽  
pp. 2751-2767 ◽  
Author(s):  
Dorota Jarecka ◽  
Wojciech W. Grabowski ◽  
Hugh Morrison ◽  
Hanna Pawlowska

Abstract This paper presents an approach to locally predict homogeneity of the subgrid-scale turbulent mixing in large-eddy simulation of shallow clouds applying double-moment warm-rain microphysics. The homogeneity of subgrid-scale mixing refers to the partitioning of the cloud water evaporation due to parameterized entrainment between changes of the mean droplet radius and changes of the mean droplet concentration. Homogeneous and extremely inhomogeneous mixing represent two limits of possible scenarios, where the droplet concentration and the mean droplet radius remains unchanged during the microphysical adjustment, respectively. To predict the subgrid-scale mixing scenario, the double-moment microphysics scheme is merged with the approach to delay droplet evaporation resulting from entrainment. Details of the new scheme and its application in the Barbados Oceanographic and Meteorological Experiment (BOMEX) shallow convection case are discussed. The simulated homogeneity of mixing varies significantly inside small convective clouds, from close to homogeneous to close to extremely inhomogeneous. The mean mixing characteristics become more homogeneous with height, reflecting increases of the mean droplet size and the mean turbulence intensity, both favoring homogeneous mixing. Model results are consistent with microphysical effects of entrainment and mixing deduced from field observations. Mixing close to homogeneous is predicted in volumes with the highest liquid water content (LWC) and strongest updraft at a given height, whereas mixing in strongly diluted volumes is typically close to extremely inhomogeneous. The simulated homogeneity of mixing has a small impact on mean microphysical characteristics. This result agrees with the previous study applying prescribed mixing scenarios and can be explained by the high humidity of the clear air involved in the subgrid-scale mixing.


2014 ◽  
Vol 14 (13) ◽  
pp. 6557-6570 ◽  
Author(s):  
C. N. Franklin

Abstract. A double moment warm rain scheme that includes the effects of turbulence on droplet collision rates has been implemented in a large-eddy model to investigate the impact of turbulence effects on clouds and precipitation. Simulations of shallow cumulus and stratocumulus show that different precipitation-dynamical feedbacks occur in these regimes when the effects of turbulence are included in the microphysical processes. In both cases inclusion of turbulent microphysics increases precipitation due to a more rapid conversion of cloud water to rain. In the shallow convection case, the greater water loading in the upper cloud levels reduces the buoyancy production of turbulent kinetic energy and the entrainment. The stratocumulus case on the other hand shows a weak positive precipitation feedback, with enhanced rainwater producing greater evaporation, stronger circulations and more turbulence. Sensitivity studies in which the cloud droplet number was varied show that greater number concentrations suppress the stratocumulus precipitation leading to larger liquid water paths. This positive second indirect aerosol effect shows no sensitivity to whether or not the effects of turbulence on droplet collision rates are included. While the sign of the second indirect effect is negative in the shallow convection case whether the effects of turbulence are considered or not, the magnitude of the effect is doubled when the turbulent microphysics are used. It is found that for these two different cloud regimes turbulence has a larger effect than cloud droplet number and the use of a different bulk microphysics scheme on producing rainfall in shallow cumuli. However, for the stratocumulus case examined here, the effects of turbulence on rainfall are not statistically significant and instead it is the cloud droplet number concentration or the choice of bulk microphysics scheme that has the largest control on the rain water.


2015 ◽  
Vol 72 (9) ◽  
pp. 3340-3355 ◽  
Author(s):  
Zhujun Li ◽  
Paquita Zuidema ◽  
Ping Zhu ◽  
Hugh Morrison

Abstract The sensitivity of nested WRF simulations of precipitating shallow marine cumuli and cold pools to microphysical parameterization is examined. The simulations differ only in their use of two widely used double-moment rain microphysical schemes: the Thompson and Morrison schemes. Both simulations produce similar mesoscale variability, with the Thompson scheme producing more weak cold pools and the Morrison scheme producing more strong cold pools, which are associated with more intense shallow convection. The most robust difference is that the cloud cover and LWP are significantly larger in the Morrison simulation than in the Thompson simulation. One-dimensional kinematic simulations confirm that dynamical feedbacks do not mask the impact of microphysics. These also help elucidate that a slower autoconversion process along with a stronger accretion process explains the Morrison scheme’s higher cloud fraction for a similar rain mixing ratio. Differences in the raindrop terminal fall speed parameters explain the higher evaporation rate of the Thompson scheme at moderate surface rain rates. Given the implications of the cloud-cover differences for the radiative forcing of the expansive trade wind regime, the microphysical scheme should be considered carefully when simulating precipitating shallow marine cumulus.


2019 ◽  
Author(s):  
George Spill ◽  
Philip Stier ◽  
Paul R. Field ◽  
Guy Dagan

Abstract. Previous study of shallow convection has generally suffered from having to balance domain size with resolution, resulting in high resolution studies which do not capture large scale behaviour of the cloud fields. In this work we hope to go some way towards addressing this by carrying out cloud resolving simulations on large domains. Simulations of trade wind cumulus are carried out using the Met Office Unified Model (UM), based on a case study from the Rain In Cumulus over the Ocean (RICO) field campaign. The UM is run with a nested domain of 500 km with 500 m resolution, in order to capture the large scale behaviour of the cloud field, and with a double-moment interactive microphysics scheme. Simulations are run using baseline aerosol profiles based on observations from RICO, which are then perturbed. We find that the aerosol perturbations result in changes to the convective behaviour of the cloud field, with higher aerosol leading to an increase (decrease) in the number of deeper (shallower) clouds. However, despite this deepening, there is little increase in the frequency of higher rain rates. This is in contrast to the findings of previous work making use of idealised simulation setups. In further contrast, we find that increasing aerosol results in a persistent increase in domain mean liquid water path and decrease in precipitation, with little impact on cloud fraction.


2014 ◽  
Vol 14 (2) ◽  
pp. 2277-2306
Author(s):  
C. N. Franklin

Abstract. A double moment warm rain scheme that includes the effects of turbulence on droplet collision rates has been implemented in a large-eddy model to investigate the impact of turbulence effects on clouds and precipitation. Simulations of shallow cumulus and stratocumulus show that different precipitation-dynamical feedbacks occur in these regimes when the effects of turbulence are included in the microphysical processes. In both cases, inclusion of turbulent microphysics increases precipitation due to a more rapid conversion of cloud water to rain. In the shallow convection case, the greater water loading and latent heating in the upper cloud levels reduces the buoyancy production of turbulent kinetic energy and the entrainment. The stratocumulus case on the other hand shows a positive precipitation feedback, with enhanced rainwater producing greater evaporation, stronger circulations and more turbulence. Sensitivity studies where the cloud droplet number was varied show that greater number concentrations suppress the stratocumulus precipitation leading to larger liquid water paths. This positive second indirect aerosol effect was produced in all of the simulations except for the case using the turbulent microphysics with the highest droplet number, which suggests a limit on the amount of liquid water that can be produced. While the sign of the second indirect effect is negative in the shallow convection case whether the effects of turbulence are considered or not, the magnitude of the effect is doubled when the turbulent microphysics are used.


2019 ◽  
Vol 19 (21) ◽  
pp. 13507-13517 ◽  
Author(s):  
George Spill ◽  
Philip Stier ◽  
Paul R. Field ◽  
Guy Dagan

Abstract. Previous study of shallow convection has generally suffered from having to balance domain size with resolution, resulting in high-resolution studies which do not capture large-scale behaviour of the cloud fields. In this work we hope to go some way towards addressing this by carrying out cloud-resolving simulations on large domains. Simulations of trade wind cumulus are carried out using the Met Office Unified Model (UM), based on a case study from the Rain In Cumulus over the Ocean (RICO) field campaign. The UM is run with a nested domain of 500 km with 500 m resolution, in order to capture the large-scale behaviour of the cloud field, and with a double-moment interactive microphysics scheme. Simulations are run using baseline aerosol profiles based on observations from RICO, which are then perturbed. We find that the aerosol perturbations result in changes to the convective behaviour of the cloud field, with higher aerosol leading to an increase (decrease) in the number of deeper (shallower) clouds. However, despite this deepening, there is little increase in the frequency of higher rain rates. This is in contrast to the findings of previous work making use of idealised simulation setups. In further contrast, we find that increasing aerosol results in a persistent increase in domain mean liquid water path and decrease in precipitation, with little impact on cloud fraction.


2012 ◽  
Vol 15 (4) ◽  
pp. 200-207
Author(s):  
Suhad L. Mahmoud ◽  
Keyword(s):  

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 906
Author(s):  
Ivan Bašták Ďurán ◽  
Martin Köhler ◽  
Astrid Eichhorn-Müller ◽  
Vera Maurer ◽  
Juerg Schmidli ◽  
...  

The single-column mode (SCM) of the ICON (ICOsahedral Nonhydrostatic) modeling framework is presented. The primary purpose of the ICON SCM is to use it as a tool for research, model evaluation and development. Thanks to the simplified geometry of the ICON SCM, various aspects of the ICON model, in particular the model physics, can be studied in a well-controlled environment. Additionally, the ICON SCM has a reduced computational cost and a low data storage demand. The ICON SCM can be utilized for idealized cases—several well-established cases are already included—or for semi-realistic cases based on analyses or model forecasts. As the case setup is defined by a single NetCDF file, new cases can be prepared easily by the modification of this file. We demonstrate the usage of the ICON SCM for different idealized cases such as shallow convection, stratocumulus clouds, and radiative transfer. Additionally, the ICON SCM is tested for a semi-realistic case together with an equivalent three-dimensional setup and the large eddy simulation mode of ICON. Such consistent comparisons across the hierarchy of ICON configurations are very helpful for model development. The ICON SCM will be implemented into the operational ICON model and will serve as an additional tool for advancing the development of the ICON model.


Sign in / Sign up

Export Citation Format

Share Document