droplet radius
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 933 ◽  
Author(s):  
Yanju Wei ◽  
Zhiqiang Mu ◽  
Yajie Zhang ◽  
Yajing Yang ◽  
Shenghua Liu ◽  
...  

This work reports experimental observation and theoretical explanation of the dynamics and morphology of a droplet passing through a soap film. During the process, the film undergoes four sequential responses: (1) film deformation upon droplet impact; (2) drop–film detachment; (3) coalescence of the film shell with the drop; (4) peel-off of the film shell. Physical models and the corresponding analytical expressions are developed to reveal the underlying physics for the observed four responses. It is identified that the film is an elongated catenoid under continuous stretch by the droplet, and that they separate at the fixed height of 5.8 times of the droplet radius while the detach point is located at the centre of the height. After separation, the droplet is wrapped with a film shell, which is then punctured by the ring tip of the converging surface wave at the impacting Weber number range of [45, 225]. The film shell then coalesces with the droplet, falls off with a fixed velocity and is eventually ejected as a bubble leaving the droplet with a transplanted surface of the soap solution.


Author(s):  
Yesid Ortiz Sanchez ◽  
Elkin Gregorio Flórez Serrano ◽  
Dairo Hernan Mesa Grajales

A numerical simulation of the intake and compression stroke and fuel spray and combustion in a direct injection compression ignition engine was performed using the Converge CFD software. For this purpose, the Reynolds Average Navier-Stokes (RANS) k-e RNG model and an n-dodecane kinetic mechanism were used in order to obtain the flow fields in the cylinder and to perform the breakup time analysis of the Kelvin-Helmholtz model in the variables related to the spray and combustion. The turbulent flow inside the cylinder was analysed, obtaining consistent results with experimental pressure data and other research authors. The droplet breakup time is evaluated as a function of the breakup time constant (B1), the initial droplet radius (ro), the wavelength  and the maximum growth rate ( . The results indicate that the numerical method and the models used in this work are adequate to perform subsequent representative combustion analyses with values of B1=7.  It was possible to show that the formation of the species OH is greater for low values of B1. Also, higher values of the breakup time, variables such as temperature, pressure, fuel evaporation, ignition delay, and species formation are affected.


2021 ◽  
Author(s):  
◽  
Nicholas Monahan

<p>Emulsions are the basis for many commercial products such as foodstuffs and paint due in part to their highly tunable flow properties. It is qualitatively understood that factors such as the dispersed phase droplet size and size distribution should affect how an emulsion flows because they influence how droplets can deform or pack. Since standard emulsification techniques such as blending and homogenization cannot produce emulsions with well-defined size distributions, little work has been done to, in particular, quantitatively determine the influence of droplet size distribution on emulsion flow properties. Consequently, in this investigation we have probed how the droplet size distribution affects emulsion flow properties by using model monodisperse emulsion systems with narrow, controllable droplet size distributions. Using a microfluidic flow focusing device, dodecane-in-water emulsions with diameters between 50 to 100 m with polydispersities less than 5% were produced, as characterized by pulsed field gradient nuclear magnetic resonance and optical microscopy. Due to the relatively large size of the droplets, it was only possible to examine the creamed phase of the emulsion. Samples of known polydispersity were made by mixing known quantities of two monodisperse emulsions. The monodisperse and bimodal emulsions were then subjected to rotational and oscillatory shear flow using a controlled stress rheometer to determine the effects of droplet size and size distribution on emulsion flow properties. Rotational and oscillatory rheological experiments showed that the monodisperse emulsions had two distinct behaviours: foam-like with appreciable thixotropy and yield stresses as well as emulsion-like with no evident thixotropy. The transition between these two behaviours appears to happen at a critical droplet radius between 33 and 37 micrometres. The rheological properties of the bimodal emulsions was split into three distinct behaviours. In samples that could be considered a matrix of large droplets perturbed by smaller droplets, the flow properties were similar to those of the constituent emulsion with the larger droplets. Increasing the number fraction of smaller droplets to a 1:1 ratio creates an entirely new phase with significantly reduced elastic properties. Surprisingly, when the emulsion primarily consists of small droplets, the flow properties are most similar to that of the large droplets. Additionally, despite the microstructural differences, all emulsions showed flow characteristics typical of soft glassy materials above the glass transition temperature. These results demonstrate the significant influence of microstructure on emulsion rheology, where altering the droplet size or polydispersity essentially creates a new phase with its own unique flow properties that is not simply a combination of the properties of the individual monodisperse components that make up the sample</p>


2021 ◽  
Author(s):  
◽  
Nicholas Monahan

<p>Emulsions are the basis for many commercial products such as foodstuffs and paint due in part to their highly tunable flow properties. It is qualitatively understood that factors such as the dispersed phase droplet size and size distribution should affect how an emulsion flows because they influence how droplets can deform or pack. Since standard emulsification techniques such as blending and homogenization cannot produce emulsions with well-defined size distributions, little work has been done to, in particular, quantitatively determine the influence of droplet size distribution on emulsion flow properties. Consequently, in this investigation we have probed how the droplet size distribution affects emulsion flow properties by using model monodisperse emulsion systems with narrow, controllable droplet size distributions. Using a microfluidic flow focusing device, dodecane-in-water emulsions with diameters between 50 to 100 m with polydispersities less than 5% were produced, as characterized by pulsed field gradient nuclear magnetic resonance and optical microscopy. Due to the relatively large size of the droplets, it was only possible to examine the creamed phase of the emulsion. Samples of known polydispersity were made by mixing known quantities of two monodisperse emulsions. The monodisperse and bimodal emulsions were then subjected to rotational and oscillatory shear flow using a controlled stress rheometer to determine the effects of droplet size and size distribution on emulsion flow properties. Rotational and oscillatory rheological experiments showed that the monodisperse emulsions had two distinct behaviours: foam-like with appreciable thixotropy and yield stresses as well as emulsion-like with no evident thixotropy. The transition between these two behaviours appears to happen at a critical droplet radius between 33 and 37 micrometres. The rheological properties of the bimodal emulsions was split into three distinct behaviours. In samples that could be considered a matrix of large droplets perturbed by smaller droplets, the flow properties were similar to those of the constituent emulsion with the larger droplets. Increasing the number fraction of smaller droplets to a 1:1 ratio creates an entirely new phase with significantly reduced elastic properties. Surprisingly, when the emulsion primarily consists of small droplets, the flow properties are most similar to that of the large droplets. Additionally, despite the microstructural differences, all emulsions showed flow characteristics typical of soft glassy materials above the glass transition temperature. These results demonstrate the significant influence of microstructure on emulsion rheology, where altering the droplet size or polydispersity essentially creates a new phase with its own unique flow properties that is not simply a combination of the properties of the individual monodisperse components that make up the sample</p>


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 319
Author(s):  
Omar Elsayed ◽  
Ralf Kirsch ◽  
Fabian Krull ◽  
Sergiy Antonyuk ◽  
Sebastian Osterroth

Recently, the trend towards sustainable energy production and pollution control has motivated the increased consumption of ultra-low-sulfur diesel (ULSD) or bio-fuels. Such fuels have relatively low surface tension with water and therefore, the separation of water from fuel has become a challenging problem. The separation process relies on using porous structures for the collection and removal of water droplets. Hence, understanding the interaction between water droplets and the separators is vital. The simplest geometry of a separator is the wire mesh screen, which is used in many modern water–diesel separators. Thus, it is considered here for systematic study. In this work, pore-scale computational fluid dynamics (CFD) simulations were performed using OpenFOAM® (an open-source C++ toolbox for fluid dynamics simulations) coupled with a new accurate scheme for the computation of the surface tension force. First, two validation test cases were performed and compared to experimental observations in corresponding bubble-point tests. Second, in order to describe the interaction between water droplets and wire mesh screens, the simulations were performed with different parameters: mean diesel velocity, open area ratio, fiber radii, Young–Laplace contact angle, and the droplet radius. New correlations were obtained which describe the average reduction of open surface area (clogging), the pressure drop, and retention criteria.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ali J. Mazaltarim ◽  
John J. Bowen ◽  
Jay M. Taylor ◽  
Stephen A. Morin

AbstractMaterials and strategies applicable to the dynamic transport of microdroplets are relevant to surface fluidics, self-cleaning materials, thermal management systems, and analytical devices. Techniques based on electrowetting, topographic micropatterns, and thermal/chemical gradients have advanced considerably, but dynamic microdroplet transport remains a challenge. This manuscript reports the fabrication of mechano-tunable, microtextured chemical gradients on elastomer films and their use in controlled microdroplet transport. Specifically, discreet mechanical deformations of these films enabled dynamic tuning of the microtextures and thus transport along surface-chemical gradients. The interplay between the driving force of the chemical gradient and the microtopography was characterized, facilitating accurate prediction of the conditions (droplet radius and roughness) which supported transport. In this work, the use of microtextured surface chemical gradients in mechano-adaptive materials with microdroplet manipulation functionality was highlighted.


2021 ◽  
Vol 253 ◽  
pp. 105470
Author(s):  
Qiong Liu ◽  
Shengyang Duan ◽  
Qianshan He ◽  
Yonghang Chen ◽  
Hua Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yonglin Yang ◽  
Xing Li ◽  
Wenshuai Wang

AbstractResearch on the wettability of soft matter is one of the most urgently needed studies in the frontier domains, of which the wetting phenomenon of droplets on soft substrates is a hot subject. Scholars have done considerable studies on the wetting phenomenon of single-layer structure, but it is noted that the wetting phenomenon of stratified structure is ubiquitous in nature, such as oil exploitation from geological structural layers and shale gas recovery from shale formations. Therefore, the wettability of droplets on layered elastic gradient soft substrate is studied in this paper. Firstly, considering capillary force, elastic force and surface tension, the constitutive equation of the substrate in the vector function system is derived by using the vector function system in cylindrical coordinates, and the transfer relation of layered structure is obtained. Further, the integral expressions of displacement and stress of double Bessel function are given. Secondly, the numerical results of displacement and stress are obtained by using the numerical formula of double Bessel function integral. The results show that the deformation of the substrate weakens with the increase of the elastic modulus, also the displacement and stress change dramatically near the contact line, while the variation is flat when the contact radius is far away from the droplet radius.


2021 ◽  
Author(s):  
Jun Inoue ◽  
Kazutoshi Sato ◽  
Yutaka Tobo ◽  
Fumikazu Taketani ◽  
Marion Maturilli

Abstract. A cloud particle sensor (CPS) sonde is an observing system attached with a radiosonde sensor to observe the vertical structure of cloud properties. The signals obtained from CPS sondes are related to the phase, size, and number of cloud particles. The system offers economic advantages including human resource and simple operation costs compared with aircraft measurements and land-/satellite-based remote sensing. However, because CPS systems are limited for data downlink to land stations, the observed information should be appropriately corrected. We launched approximately 40 CPS sondes in the Arctic region between 2018 and 2020 and use these data sets to develop correction methods that exclude unreliable data, estimate the effective cloud water droplet radius, and determine a correction factor for the total cloud particle count. We apply this method to data obtained in October 2019 over the Arctic Ocean and March 2020 at Ny-Alesund, Svalbard, Norway to compare with a particle counter onboard a tethered balloon and liquid water content retrieved by a microwave radiometer. The estimated total particle count and liquid water content from the CPS sondes generally agree with those data, which exemplifies the promising advantages of this approach to retrieve quantitative and meaningful information on the vertical distribution of cloud microphysics.


2021 ◽  
Vol 21 (1) ◽  
pp. 69-85
Author(s):  
Shian Guo ◽  
Huiwen Xue

Abstract. The effects of electric charges and fields on droplet collision–coalescence and the evolution of cloud droplet size distribution are studied numerically. Collision efficiencies for droplet pairs with radii from 2 to 1024 µm and charges from −32 r2 to +32 r2 (in units of elementary charge; droplet radius r in units of µm) in different strengths of downward electric fields (0, 200, and 400 V cm−1) are computed by solving the equations of motion for the droplets. It is seen that the collision efficiency is increased by electric charges and fields, especially for pairs of small droplets. These can be considered as being electrostatic effects. The evolution of the cloud droplet size distribution with the electrostatic effects is simulated using the stochastic collection equation. Results show that the electrostatic effect is not notable for clouds with the initial mean droplet radius of r¯=15 µm or larger. For clouds with the initial r¯=9 µm, the electric charge without a field could evidently accelerate raindrop formation compared to the uncharged condition, and the existence of electric fields further accelerates it. For clouds with the initial r¯=6.5 µm, it is difficult for gravitational collision to occur, and the electric field could significantly enhance the collision process. The results of this study indicate that electrostatic effects can accelerate raindrop formation in natural conditions, particularly for polluted clouds. It is seen that the aerosol effect on the suppression of raindrop formation is significant in polluted clouds, when comparing the three cases with r¯=15, 9, and 6.5 µm. However, the electrostatic effects can accelerate raindrop formation in polluted clouds and mitigate the aerosol effect to some extent.


Sign in / Sign up

Export Citation Format

Share Document