scholarly journals Mass Balance Assessment of the Amery Ice Shelf Basin, East Antarctica

2019 ◽  
Vol 6 (10) ◽  
pp. 1987-1999 ◽  
Author(s):  
Chunxia Zhou ◽  
Qi Liang ◽  
Yiming Chen ◽  
Haobo Lei ◽  
Zheng Fu ◽  
...  
2014 ◽  
Vol 55 (66) ◽  
pp. 81-86 ◽  
Author(s):  
Jiahong Wen ◽  
Long Huang ◽  
Weili Wang ◽  
T.H. Jacka ◽  
V. Damm ◽  
...  

AbstractWe combine radio-echo sounding ice thickness data from the BEDMAP Project database and the PCMEGA (Prince Charles Mountains Expedition of Germany and Australia) dataset to generate a new ice thickness grid for the southern limit region of the Amery Ice Shelf, East Antarctica. We then reassess the mass balance of the central portion of the Lambert-Amery system, incorporating flow information derived from synthetic aperture radar interferometry (InSAR) and a modeled surface mass-balance dataset based on regional atmospheric modeling. Our analysis reveals that Mellor and Fisher Glaciers are approximately in balance to the level of our measurement uncertainty, while Lambert Glacier has a positive imbalance of 4.2 ±2.3 Gta1. The mass budget for the whole Lambert Glacier basin is approximately in balance, and the average basal melt rate in the downstream section of the ice shelf is 5.1 ± 3.0 m a-1. Our results differ substantially from other recent estimates using hydrostatically derived ice thickness data.


2022 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Derui Xu ◽  
Xueyuan Tang ◽  
Shuhu Yang ◽  
Yun Zhang ◽  
Lijuan Wang ◽  
...  

Due to rapid global warming, the relationship between the mass loss of the Antarctic ice sheet and rising sea levels are attracting widespread attention. The Lambert–Amery glacial system is the largest drainage system in East Antarctica, and its mass balance has an important influence on the stability of the Antarctic ice sheet. In this paper, the recent ice flux in the Lambert Glacier of the Lambert–Amery system was systematically analyzed based on recently updated remote sensing data. According to Landsat-8 ice velocity data from 2018 to April 2019 and the updated Bedmachine v2 ice thickness dataset in 2021, the contribution of ice flux approximately 140 km downstream from Dome A in the Lambert Glacier area to downstream from the glacier is 8.5 ± 1.9, and the ice flux in the middle of the convergence region is 18.9 ± 2.9. The ice mass input into the Amery ice shelf through the grounding line of the whole glacier is 19.9 ± 1.3. The ice flux output from the mainstream area of the grounding line is 19.3 ± 1.0. Using the annual SMB data of the regional atmospheric climate model (RACMO v2.3) as the quality input, the mass balance of the upper, middle, and lower reaches of the Lambert Glacier was analyzed. The results show that recent positive accumulation appears in the middle region of the glacier (about 74–78°S, 67–85°E) and the net accumulation of the whole glacier is 2.4 ± 3.5. Although the mass balance of the Lambert Glacier continues to show a positive accumulation, and the positive value in the region is decreasing compared with values obtained in early 2000.


1998 ◽  
Vol 27 ◽  
pp. 75-80 ◽  
Author(s):  
M.J.M. Williams ◽  
R. C. Warner ◽  
W. F. Budd

Using a three-dimensional ocean model specially adapted to the ocean cavity under the Amery Ice Shelf, we investigated the present ocean circulation and pattern of ice-shelf basal melting and freezing, the differences which would result from temperature changes in the seas adjacent to the Amery Ice Shelf, and the ramifications of these changes for the mass balance of the ice shelf. Under present conditions we estimate the net loss from the Amery Ice Shelf from excess basal melting over freezing at approximately 7.8 Gt a−1. This comprises a gross loss of 11.4 Gt a−1 at a mean rate of 0.42 m a−1, which is partially offset by freezing-on of 3.6 Gt a−1, at a mean rate of 0.19 m a−1. When the adjacent seas were assumed to warm by 1°C, we found the net melt increased to 31.6 Gt a−1, comprising 34.6 Gt a−1 of gross melt and 3.0 Gt a−1 of freezing.


2009 ◽  
Vol 55 (192) ◽  
pp. 717-728 ◽  
Author(s):  
Mike Craven ◽  
Ian Allison ◽  
Helen Amanda Fricker ◽  
Roland Warner

AbstractThe Amery Ice Shelf, East Antarctica, undergoes high basal melt rates near the southern limit of its grounding line where 80% of the ice melts within 240 km of becoming afloat. A considerable portion of this later refreezes downstream as marine ice. This produces a marine ice layer up to 200 m thick in the northwest sector of the ice shelf concentrated in a pair of longitudinal bands that extend some 200 km all the way to the calving front. We drilled through the eastern marine ice band at two locations 70 km apart on the same flowline. We determine an average accretion rate of marine ice of 1.1 ± 0.2 m a−1, at a reference density of 920 kg m−3 between borehole sites, and infer a similar average rate of 1.3 ± 0.2 m a−1 upstream. The deeper marine ice was permeable enough that a hydraulic connection was made whilst the drill was still 70–100 m above the ice-shelf base. Below this marine close-off depth, borehole video imagery showed permeable ice with water-filled cavities and individual ice platelets fused together, while the upper marine ice was impermeable with small brine-cell inclusions. We infer that the uppermost portion of the permeable ice becomes impermeable with the passage of time and as more marine ice is accreted on the base of the shelf. We estimate an average closure rate of 0.3 m a−1 between the borehole sites; upstream the average closure rate is faster at 0.9 m a−1. We estimate an average porosity of the total marine ice layer of 14–20%, such that the deeper ice must have even higher values. High permeability implies that sea water can move relatively freely through the material, and we propose that where such marine ice exists this renders deep parts of the ice shelf particularly vulnerable to changes in ocean properties.


2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


Polar Biology ◽  
2006 ◽  
Vol 30 (2) ◽  
pp. 143-153 ◽  
Author(s):  
D. Roberts ◽  
M. Craven ◽  
Minghong Cai ◽  
I. Allison ◽  
G. Nash

2015 ◽  
Vol 120 (4) ◽  
pp. 3098-3112 ◽  
Author(s):  
Laura Herraiz-Borreguero ◽  
Richard Coleman ◽  
Ian Allison ◽  
Stephen R. Rintoul ◽  
Mike Craven ◽  
...  

2008 ◽  
Vol 54 (184) ◽  
pp. 17-27 ◽  
Author(s):  
Jeremy N. Bassis ◽  
Helen A. Fricker ◽  
Richard Coleman ◽  
Jean-Bernard Minster

AbstractFor three field seasons (2002/03, 2004/05, 2005/06) we have deployed a network of GPS receivers and seismometers around the tip of a propagating rift on the Amery Ice Shelf, East Antarctica. During these campaigns we detected seven bursts of episodic rift propagation. To determine whether these rift propagation events were triggered by short-term environmental forcings, we analyzed simultaneous ancillary data such as wind speeds, tidal amplitudes and sea-ice fraction (a proxy variable for ocean swell). We find that none of these environmental forcings, separately or together, correlated with rift propagation. This apparent insensitivity of ice-shelf rift propagation to short-term environmental forcings leads us to suggest that the rifting process is primarily driven by the internal glaciological stress. Our hypothesis is supported by order-of-magnitude calculations that the glaciological stress is the dominant term in the force balance. However, our calculations also indicate that as the ice shelf thins or the rift system matures and iceberg detachment becomes imminent, short-term stresses due to winds and ocean swell may become more important.


Sign in / Sign up

Export Citation Format

Share Document