scholarly journals Revisiting Ice Flux and Mass Balance of the Lambert Glacier–Amery Ice Shelf System Using Multi-Remote-Sensing Datasets, East Antarctica

2022 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Derui Xu ◽  
Xueyuan Tang ◽  
Shuhu Yang ◽  
Yun Zhang ◽  
Lijuan Wang ◽  
...  

Due to rapid global warming, the relationship between the mass loss of the Antarctic ice sheet and rising sea levels are attracting widespread attention. The Lambert–Amery glacial system is the largest drainage system in East Antarctica, and its mass balance has an important influence on the stability of the Antarctic ice sheet. In this paper, the recent ice flux in the Lambert Glacier of the Lambert–Amery system was systematically analyzed based on recently updated remote sensing data. According to Landsat-8 ice velocity data from 2018 to April 2019 and the updated Bedmachine v2 ice thickness dataset in 2021, the contribution of ice flux approximately 140 km downstream from Dome A in the Lambert Glacier area to downstream from the glacier is 8.5 ± 1.9, and the ice flux in the middle of the convergence region is 18.9 ± 2.9. The ice mass input into the Amery ice shelf through the grounding line of the whole glacier is 19.9 ± 1.3. The ice flux output from the mainstream area of the grounding line is 19.3 ± 1.0. Using the annual SMB data of the regional atmospheric climate model (RACMO v2.3) as the quality input, the mass balance of the upper, middle, and lower reaches of the Lambert Glacier was analyzed. The results show that recent positive accumulation appears in the middle region of the glacier (about 74–78°S, 67–85°E) and the net accumulation of the whole glacier is 2.4 ± 3.5. Although the mass balance of the Lambert Glacier continues to show a positive accumulation, and the positive value in the region is decreasing compared with values obtained in early 2000.

2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2020 ◽  
Author(s):  
Helene Seroussi ◽  
Sophie Nowicki ◽  
Antony J. Payne ◽  
Heiko Goelzer ◽  
William H. Lipscomb ◽  
...  

Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and inform on the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimated the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes and the forcings employed. This study presents results from 18 simulations from 15 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100, forced with different scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) representative of the spread in climate model results. The contribution of the Antarctic ice sheet in response to increased warming during this period varies between −7.8 and 30.0 cm of Sea Level Equivalent (SLE). The evolution of the West Antarctic Ice Sheet varies widely among models, with an overall mass loss up to 21.0 cm SLE in response to changes in oceanic conditions. East Antarctica mass change varies between −6.5 and 16.5 cm SLE, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional mass loss of 8 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 AOGCMs show an overall mass loss of 10 mm SLE compared to simulations done under present-day conditions, with limited mass gain in East Antarctica.


2020 ◽  
Author(s):  
Helene Seroussi ◽  
Heiko Goelzer ◽  
Mathieu Morlighem ◽  

<div> <div> <div> <p>Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to differ- ent climate scenarios and inform on the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimated the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes and the forcings employed. This study presents results from 18 simulations from 15 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100, forced with different scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) representative of the spread in climate model results. The contribution of the Antarctic ice sheet in response to increased warming during this period varies between -7.8 and 30.0 cm of Sea Level Equivalent (SLE). The evolution of the West Antarctic Ice Sheet varies widely among models, with an overall mass loss up to 21.0 cm SLE in response to changes in oceanic conditions. East Antarctica mass change varies between -6.5 and 16.5 cm SLE, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional mass loss of 8 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 AOGCMs show an overall mass loss of 10 mm SLE compared to simulations done under present-day conditions, with limited mass gain in East Antarctica.</p> </div> </div> </div>


2020 ◽  
Author(s):  
Mariel Dirscherl ◽  
Andreas Dietz ◽  
Celia Baumhoer ◽  
Christof Kneisel ◽  
Claudia Kuenzer

<p>Antarctica stores ~91 % of the global ice mass making it the biggest potential contributor to global sea-level-rise. With increased surface air temperatures during austral summer as well as in consequence of global climate change, the ice sheet is subject to surface melting resulting in the formation of supraglacial lakes in local surface depressions. Supraglacial meltwater features may impact Antarctic ice dynamics and mass balance through three main processes. First of all, it may cause enhanced ice thinning thus a potentially negative Antarctic Surface Mass Balance (SMB). Second, the temporary injection of meltwater to the glacier bed may cause transient ice speed accelerations and increased ice discharge. The last mechanism involves a process called hydrofracturing i.e. meltwater-induced ice shelf collapse caused by the downward propagation of surface meltwater into crevasses or fractures, as observed along large coastal sections of the northern Antarctic Peninsula. Despite the known impact of supraglacial meltwater features on ice dynamics and mass balance, the Antarctic surface hydrological network remains largely understudied with an automated method for supraglacial lake and stream detection still missing. Spaceborne remote sensing and data of the Sentinel missions in particular provide an excellent basis for the monitoring of the Antarctic surface hydrological network at unprecedented spatial and temporal coverage.</p><p>In this study, we employ state-of-the-art machine learning for automated supraglacial lake and stream mapping on basis of optical Sentinel-2 satellite data. With more detail, we use a total of 72 Sentinel-2 acquisitions distributed across the Antarctic Ice Sheet together with topographic information to train and test the selected machine learning algorithm. In general, our machine learning workflow is designed to discriminate between surface water, ice/snow, rock and shadow being further supported by several automated post-processing steps. In order to ensure the algorithm’s transferability in space and time, the acquisitions used for training the machine learning model are chosen to cover the full circle of the 2019 melt season and the data selected for testing the algorithm span the 2017 and 2018 melt seasons. Supraglacial lake predictions are presented for several regions of interest on the East and West Antarctic Ice Sheet as well as along the Antarctic Peninsula and are validated against randomly sampled points in the underlying Sentinel-2 RGB images. To highlight the performance of our model, we specifically focus on the example of the Amery Ice Shelf in East Antarctica, where we applied our algorithm on Sentinel-2 data in order to present the temporal evolution of maximum lake extent during three consecutive melt seasons (2017, 2018 and 2019).</p>


2018 ◽  
Vol 12 (1) ◽  
pp. 49-70 ◽  
Author(s):  
Werner M. J. Lazeroms ◽  
Adrian Jenkins ◽  
G. Hilmar Gudmundsson ◽  
Roderik S. W. van de Wal

Abstract. Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.


2016 ◽  
Author(s):  
Bianca Kallenberg ◽  
Paul Tregoning ◽  
Janosch F. Hoffmann ◽  
Rhys Hawkins ◽  
Anthony Purcell ◽  
...  

Abstract. Mass balance changes of the Antarctic ice sheet are of significant interest due to its sensitivity to climatic changes and its contribution to changes in global sea level. While regional climate models successfully estimate mass input due to snowfall, it remains difficult to estimate the amount of mass loss due to ice dynamic processes. It's often been assumed that changes in ice dynamic rates only need to be considered when assessing long term ice sheet mass balance; however, two decades of satellite altimetry observations reveal that the Antarctic ice sheet changes unexpectedly and much more dynamically than previously expected. Despite available estimates on ice dynamic rates obtained from radar altimetry, information about changes in ice dynamic rates are still limited, especially in East Antarctica. Without understanding ice dynamic rates it is not possible to properly assess changes in ice sheet mass balance, surface elevation or to develop ice sheet models. In this study we investigate the possibility of estimating ice dynamic rates by removing modelled rates of surface mass balance, firn compaction and bedrock uplift from satellite altimetry and gravity observations. With similar rates of ice discharge acquired from two different satellite missions we show that it is possible to obtain an approximation of ice dynamic rates by combining altimetry and gravity observations. Thus, surface elevation changes due to surface mass balance, firn compaction and ice dynamic rates can be modelled and correlate with observed elevation changes from satellite altimetry.


2021 ◽  
Author(s):  
Yijing Lin ◽  
Yan Liu ◽  
Zhitong Yu ◽  
Xiao Cheng ◽  
Qiang Shen ◽  
...  

Abstract. The input-output method (IOM) is one of the most popular methods of estimating the ice sheet mass balance (MB), with a significant advantage in presenting the dynamics response of ice to climate change. Assessing the uncertainties of the MB estimation using the IOM is crucial to gaining a clear understanding of the Antarctic ice-sheet mass budget. Here, we introduce a framework for assessing the uncertainties in the MB estimation due to the methodological differences in the IOM, the impact of the parameterization and scale effect on the modeled surface mass balance (SMB, input), and the impact of the uncertainties of ice thickness, ice velocity, and grounding line data on ice discharge (D, output). For the assessment of the D’s uncertainty, we present D at a fine scale. Compared with the goal of determining the Antarctic MB within an uncertainty of 15 Gt yr−1, we found that the different strategies employed in the methods cause considerable uncertainties in the annual MB estimation. The uncertainty of the RACMO2.3 SMB caused by its parameterization can reach 20.4 Gt yr−1, while that due to the scale effect is up to 216.7 Gt yr−1. The observation precisions of the MEaSUREs InSAR-based velocity (1–17 m yr−1), the airborne radio-echo sounder thickness (±100 m), and the MEaSUREs InSAR-based grounding line (±100 m) contribute uncertainties of 17.1 Gt yr−1, 10.5 ± 2.7 Gt yr−1 and 8.0~27.8 Gt yr−1 to the D, respectively. However, the D’s uncertainty due to the remarkable ice thickness data gap, which is represented by the thickness difference between the BEDMAP2 and the BedMachine reaches 101.7 Gt yr−1, which indicates its dominant cause of the future D’s uncertainty. In addition, the interannual variability of D caused by the annual changes in the ice velocity and ice thickness are considerable compared with the target uncertainty of 15 Gt yr−1, which cannot be ignored in annual MB estimations.


2015 ◽  
Vol 56 (70) ◽  
pp. 63-69 ◽  
Author(s):  
Denis Callens ◽  
Nicolas Thonnard ◽  
Jan T.M. Lenaerts ◽  
Jan M. Van Wessem ◽  
Willem Jan Van de Berg ◽  
...  

AbstractMass changes of polar ice sheets have an important societal impact, because they affect global sea level. Estimating the current mass budget of ice sheets is equivalent to determining the balance between surface mass gain through precipitation and outflow across the grounding line. For the Antarctic ice sheet, grounding line outflow is governed by oceanic processes and outlet glacier dynamics. In this study, we compute the mass budget of major outlet glaciers in the eastern Dronning Maud Land sector of the Antarctic ice sheet using the input/output method. Input is given by recent surface accumulation estimates (SMB) of the whole drainage basin. The outflow at the grounding line is determined from the radar data of a recent airborne survey and satellite-based velocities using a flow model of combined plug flow and simple shear. This approach is an improvement on previous studies, as the ice thickness is measured, rather than being estimated from hydrostatic equilibrium. In line with the general thickening of the ice sheet over this sector, we estimate the regional mass balance in this area at 3.15 ± 8.23 Gt a−1 according to the most recent SMB model results.


2014 ◽  
Vol 55 (66) ◽  
pp. 81-86 ◽  
Author(s):  
Jiahong Wen ◽  
Long Huang ◽  
Weili Wang ◽  
T.H. Jacka ◽  
V. Damm ◽  
...  

AbstractWe combine radio-echo sounding ice thickness data from the BEDMAP Project database and the PCMEGA (Prince Charles Mountains Expedition of Germany and Australia) dataset to generate a new ice thickness grid for the southern limit region of the Amery Ice Shelf, East Antarctica. We then reassess the mass balance of the central portion of the Lambert-Amery system, incorporating flow information derived from synthetic aperture radar interferometry (InSAR) and a modeled surface mass-balance dataset based on regional atmospheric modeling. Our analysis reveals that Mellor and Fisher Glaciers are approximately in balance to the level of our measurement uncertainty, while Lambert Glacier has a positive imbalance of 4.2 ±2.3 Gta1. The mass budget for the whole Lambert Glacier basin is approximately in balance, and the average basal melt rate in the downstream section of the ice shelf is 5.1 ± 3.0 m a-1. Our results differ substantially from other recent estimates using hydrostatically derived ice thickness data.


Sign in / Sign up

Export Citation Format

Share Document