scholarly journals Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries

2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.

2013 ◽  
Vol 7 (6) ◽  
pp. 5683-5709
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheets regions is a key process in global environmental change. We carried out ice dynamic simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by two ocean and two atmosphere models. The change of the ice thickness and velocity in the ice shelf is mainly influenced by the basal melting distribution, but, although the ice shelf thins in the most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 30 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but none of the ocean models provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


2022 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Derui Xu ◽  
Xueyuan Tang ◽  
Shuhu Yang ◽  
Yun Zhang ◽  
Lijuan Wang ◽  
...  

Due to rapid global warming, the relationship between the mass loss of the Antarctic ice sheet and rising sea levels are attracting widespread attention. The Lambert–Amery glacial system is the largest drainage system in East Antarctica, and its mass balance has an important influence on the stability of the Antarctic ice sheet. In this paper, the recent ice flux in the Lambert Glacier of the Lambert–Amery system was systematically analyzed based on recently updated remote sensing data. According to Landsat-8 ice velocity data from 2018 to April 2019 and the updated Bedmachine v2 ice thickness dataset in 2021, the contribution of ice flux approximately 140 km downstream from Dome A in the Lambert Glacier area to downstream from the glacier is 8.5 ± 1.9, and the ice flux in the middle of the convergence region is 18.9 ± 2.9. The ice mass input into the Amery ice shelf through the grounding line of the whole glacier is 19.9 ± 1.3. The ice flux output from the mainstream area of the grounding line is 19.3 ± 1.0. Using the annual SMB data of the regional atmospheric climate model (RACMO v2.3) as the quality input, the mass balance of the upper, middle, and lower reaches of the Lambert Glacier was analyzed. The results show that recent positive accumulation appears in the middle region of the glacier (about 74–78°S, 67–85°E) and the net accumulation of the whole glacier is 2.4 ± 3.5. Although the mass balance of the Lambert Glacier continues to show a positive accumulation, and the positive value in the region is decreasing compared with values obtained in early 2000.


2009 ◽  
Vol 55 (192) ◽  
pp. 717-728 ◽  
Author(s):  
Mike Craven ◽  
Ian Allison ◽  
Helen Amanda Fricker ◽  
Roland Warner

AbstractThe Amery Ice Shelf, East Antarctica, undergoes high basal melt rates near the southern limit of its grounding line where 80% of the ice melts within 240 km of becoming afloat. A considerable portion of this later refreezes downstream as marine ice. This produces a marine ice layer up to 200 m thick in the northwest sector of the ice shelf concentrated in a pair of longitudinal bands that extend some 200 km all the way to the calving front. We drilled through the eastern marine ice band at two locations 70 km apart on the same flowline. We determine an average accretion rate of marine ice of 1.1 ± 0.2 m a−1, at a reference density of 920 kg m−3 between borehole sites, and infer a similar average rate of 1.3 ± 0.2 m a−1 upstream. The deeper marine ice was permeable enough that a hydraulic connection was made whilst the drill was still 70–100 m above the ice-shelf base. Below this marine close-off depth, borehole video imagery showed permeable ice with water-filled cavities and individual ice platelets fused together, while the upper marine ice was impermeable with small brine-cell inclusions. We infer that the uppermost portion of the permeable ice becomes impermeable with the passage of time and as more marine ice is accreted on the base of the shelf. We estimate an average closure rate of 0.3 m a−1 between the borehole sites; upstream the average closure rate is faster at 0.9 m a−1. We estimate an average porosity of the total marine ice layer of 14–20%, such that the deeper ice must have even higher values. High permeability implies that sea water can move relatively freely through the material, and we propose that where such marine ice exists this renders deep parts of the ice shelf particularly vulnerable to changes in ocean properties.


2017 ◽  
Author(s):  
Ralph Timmermann ◽  
Sebastian Goeller

Abstract. A Regional Antarctic and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner-Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in-situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase of ice-shelf basal melt rates.


2021 ◽  
Author(s):  
Chen Zhao ◽  
Rupert Gladstone ◽  
Ben Galton-Fenzi ◽  
David Gwyther

<p>The ocean-driven basal melting has important implications for the stability of ice shelves in Antarctic, which largely affects the ice sheet mass balance, ocean circulation, and subsequently global sea level rise. Due to the limited observations in the ice shelf cavities, the couple ice sheet ocean models have been playing a critical role in examining the processes governing basal melting. In this study we use the Framework for Ice Sheet-Ocean Coupling (FISOC) to couple the Elmer/Ice full-stokes ice sheet model and the Regional Ocean Modeling System (ROMS) ocean model to model ice shelf/ocean interactions for an idealised three-dimensional domain. Experiments followed the coupled ice sheet–ocean experiments under the first phase of the Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1). A periodic pattern in the simulated mean basal melting rates is found to be highly consistent with the maximum barotropic stream function and also the grounding line retreat row by row,  which is likely to be related with the gyre break down near the grounding line caused by some non-physical instability events from the ocean bottom. Sensitivity tests are carried out, showing that this periodic pattern is not sensitive to the choice of couple time intervals and horizontal eddy viscosities but sensitive to vertical resolution in the ocean model, the chosen critical water column thickness in the wet-dry scheme, and the tracer properties for the nudging dry cells at the ice-ocean interface boundary. Further simulations are necessary to better explain the mechanism involved in the couple ice-ocean system, which is very significant for its application on the realistic ice-ocean systems in polar regions.</p>


Ocean Science ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 765-776 ◽  
Author(s):  
Ralph Timmermann ◽  
Sebastian Goeller

Abstract. The Regional Antarctic ice and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice-shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner–Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase in ice-shelf basal melt rates.


2014 ◽  
Vol 8 (4) ◽  
pp. 1561-1576 ◽  
Author(s):  
S. Sun ◽  
S. L. Cornford ◽  
Y. Liu ◽  
J. C. Moore

Abstract. Accurate and extensive bedrock geometry data is essential in ice sheet modelling. The shape of the bedrock on fine scales can influence ice sheet evolution, for example through the formation of pinning points that alter grounding line dynamics. Here we test the sensitivity of the BISICLES adaptive mesh ice sheet model to small-amplitude height fluctuations on different spatial scales in the bedrock topography provided by Bedmap2 in the catchments of Pine Island Glacier, the Amery Ice shelf and a region of East Antarctica including the Aurora Basin, Law Dome and Totten Glacier. We generate an ensemble of bedrock topographies by adding random noise to the Bedmap2 data with amplitude determined by the accompanying estimates of bedrock uncertainty. We find that the small-amplitude fluctuations result in only minor changes in the way these glaciers evolve. However, lower-frequency noise, with a broad spatial scale (over tens of kilometres) is more important than higher-frequency noise even when the features have the same height amplitudes and the total noise power is maintained. This is cause for optimism regarding credible sea level rise estimates with presently achievable density of thickness measurements. Pine Island Glacier and the region around Totten Glacier and Law Dome undergo substantial retreat and appear to be more sensitive to errors in bed topography than the Amery Ice shelf region which remains stable under the present-day observational data uncertainty.


2000 ◽  
Vol 46 (153) ◽  
pp. 197-205 ◽  
Author(s):  
Christoph Mayer ◽  
Martin J. Siegert

AbstractA numerical model of the ice-sheet/ice-shelf transition was used to investigate ice-sheet dynamics across the large subglacial lake beneath Vostok station, central East Antarctica. European Remote-sensing Satellite (ERS-1) altimetry of the ice surface and 60 MHz radio-echo sounding (RES) of the ice-sheet base and internal ice-sheet layering were used to develop a conceptual flowline across the ice sheet, which the model used as input. The model calculates horizontal and vertical velocities and stresses, from which particle flow paths can be obtained, and the ice-sheet temperature distribution. An inverse approach to modelling was adopted, where particle flow paths were forced to match those identified from internal RES layering. Results show that ice dynamics across the inflow grounding line are similar to an ice-sheet/ice-shelf transition. Model particle flow paths match internal RES layering when ice is (a) taken away from the ice base across the first 2 km of the flowline over the lake and (b) added to the base across the remainder of the lake. We contend that the process causing this transfer of ice is likely to be melting of ice and freezing of water at the ice–water interface. Other explanations, such as enhanced rates of accumulation over the grounding line, or three-dimensional convergent/divergent flow of ice are inconsistent with available measurements. Such melting and refreezing would be responsible for circulation and mixing of at least the surface layers of the lake water. Our model suggests that several tens of metres of refrozen “basal ice” would accrete from lake water to the ice sheet before the ice regrounds.


2014 ◽  
Vol 55 (66) ◽  
pp. 81-86 ◽  
Author(s):  
Jiahong Wen ◽  
Long Huang ◽  
Weili Wang ◽  
T.H. Jacka ◽  
V. Damm ◽  
...  

AbstractWe combine radio-echo sounding ice thickness data from the BEDMAP Project database and the PCMEGA (Prince Charles Mountains Expedition of Germany and Australia) dataset to generate a new ice thickness grid for the southern limit region of the Amery Ice Shelf, East Antarctica. We then reassess the mass balance of the central portion of the Lambert-Amery system, incorporating flow information derived from synthetic aperture radar interferometry (InSAR) and a modeled surface mass-balance dataset based on regional atmospheric modeling. Our analysis reveals that Mellor and Fisher Glaciers are approximately in balance to the level of our measurement uncertainty, while Lambert Glacier has a positive imbalance of 4.2 ±2.3 Gta1. The mass budget for the whole Lambert Glacier basin is approximately in balance, and the average basal melt rate in the downstream section of the ice shelf is 5.1 ± 3.0 m a-1. Our results differ substantially from other recent estimates using hydrostatically derived ice thickness data.


Sign in / Sign up

Export Citation Format

Share Document