scholarly journals Ice thickness over the southern limit of the Amery Ice Shelf, East Antarctica, and reassessment of the mass balance of the central portion of the Lambert Glacier-Amery Ice Shelf system

2014 ◽  
Vol 55 (66) ◽  
pp. 81-86 ◽  
Author(s):  
Jiahong Wen ◽  
Long Huang ◽  
Weili Wang ◽  
T.H. Jacka ◽  
V. Damm ◽  
...  

AbstractWe combine radio-echo sounding ice thickness data from the BEDMAP Project database and the PCMEGA (Prince Charles Mountains Expedition of Germany and Australia) dataset to generate a new ice thickness grid for the southern limit region of the Amery Ice Shelf, East Antarctica. We then reassess the mass balance of the central portion of the Lambert-Amery system, incorporating flow information derived from synthetic aperture radar interferometry (InSAR) and a modeled surface mass-balance dataset based on regional atmospheric modeling. Our analysis reveals that Mellor and Fisher Glaciers are approximately in balance to the level of our measurement uncertainty, while Lambert Glacier has a positive imbalance of 4.2 ±2.3 Gta1. The mass budget for the whole Lambert Glacier basin is approximately in balance, and the average basal melt rate in the downstream section of the ice shelf is 5.1 ± 3.0 m a-1. Our results differ substantially from other recent estimates using hydrostatically derived ice thickness data.

2006 ◽  
Vol 43 ◽  
pp. 351-360 ◽  
Author(s):  
Jiahong Wen ◽  
Kenneth C. Jezek ◽  
Andrew J. Monaghan ◽  
Bo Sun ◽  
Jiawen Ren ◽  
...  

AbstractThe temporal and spatial variability of the annual accumulation rate and the mass budgets of five sub-basins of the Lambert Glacier-Amery Ice Shelf system (LAS), East Antarctica, at high elevations are assessed using a variety of datasets derived from field measurements and modeling. The annual temporal variations of the accumulation rate for four cores from the west and east sides of the LAS are around ±34%. Decadal fluctuation of the accumulation from the DT001 firn core drops to ±10%, and the 30 year fluctuation to ±5%, which is assumed to contain the information about the regional and long-term trend in accumulation. The 15-point running mean of the annual accumulation rate derived from stake measurements can remove most of the high-frequency spatial variation so as to better represent the local accumulation. Model simulations show that the spatial variability of erosion/ deposition of snow by the wind has a noticeable impact on the surface mass balance at the higher parts of the LAS. Mass-budget estimates at high-elevation sub-basins of the LAS suggest drainage 9 has a negative imbalance of −0.7 ± 0.4 Gta-1, Lambert and Mellor Glaciers have a positive imbalance of 3.9 ± 2.1 and 2.1 ±2.4 Gta-1 respectively, and Fisher Glacier and drainage 11 are approximately in balance. The higher-elevation region as a whole has a positive mass imbalance of 4.4 ± 6.3 Gta-1, which is consistent with the most recent radar altimetry assessment that shows an overall thickening over this region.


2022 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Derui Xu ◽  
Xueyuan Tang ◽  
Shuhu Yang ◽  
Yun Zhang ◽  
Lijuan Wang ◽  
...  

Due to rapid global warming, the relationship between the mass loss of the Antarctic ice sheet and rising sea levels are attracting widespread attention. The Lambert–Amery glacial system is the largest drainage system in East Antarctica, and its mass balance has an important influence on the stability of the Antarctic ice sheet. In this paper, the recent ice flux in the Lambert Glacier of the Lambert–Amery system was systematically analyzed based on recently updated remote sensing data. According to Landsat-8 ice velocity data from 2018 to April 2019 and the updated Bedmachine v2 ice thickness dataset in 2021, the contribution of ice flux approximately 140 km downstream from Dome A in the Lambert Glacier area to downstream from the glacier is 8.5 ± 1.9, and the ice flux in the middle of the convergence region is 18.9 ± 2.9. The ice mass input into the Amery ice shelf through the grounding line of the whole glacier is 19.9 ± 1.3. The ice flux output from the mainstream area of the grounding line is 19.3 ± 1.0. Using the annual SMB data of the regional atmospheric climate model (RACMO v2.3) as the quality input, the mass balance of the upper, middle, and lower reaches of the Lambert Glacier was analyzed. The results show that recent positive accumulation appears in the middle region of the glacier (about 74–78°S, 67–85°E) and the net accumulation of the whole glacier is 2.4 ± 3.5. Although the mass balance of the Lambert Glacier continues to show a positive accumulation, and the positive value in the region is decreasing compared with values obtained in early 2000.


2009 ◽  
Vol 55 (192) ◽  
pp. 717-728 ◽  
Author(s):  
Mike Craven ◽  
Ian Allison ◽  
Helen Amanda Fricker ◽  
Roland Warner

AbstractThe Amery Ice Shelf, East Antarctica, undergoes high basal melt rates near the southern limit of its grounding line where 80% of the ice melts within 240 km of becoming afloat. A considerable portion of this later refreezes downstream as marine ice. This produces a marine ice layer up to 200 m thick in the northwest sector of the ice shelf concentrated in a pair of longitudinal bands that extend some 200 km all the way to the calving front. We drilled through the eastern marine ice band at two locations 70 km apart on the same flowline. We determine an average accretion rate of marine ice of 1.1 ± 0.2 m a−1, at a reference density of 920 kg m−3 between borehole sites, and infer a similar average rate of 1.3 ± 0.2 m a−1 upstream. The deeper marine ice was permeable enough that a hydraulic connection was made whilst the drill was still 70–100 m above the ice-shelf base. Below this marine close-off depth, borehole video imagery showed permeable ice with water-filled cavities and individual ice platelets fused together, while the upper marine ice was impermeable with small brine-cell inclusions. We infer that the uppermost portion of the permeable ice becomes impermeable with the passage of time and as more marine ice is accreted on the base of the shelf. We estimate an average closure rate of 0.3 m a−1 between the borehole sites; upstream the average closure rate is faster at 0.9 m a−1. We estimate an average porosity of the total marine ice layer of 14–20%, such that the deeper ice must have even higher values. High permeability implies that sea water can move relatively freely through the material, and we propose that where such marine ice exists this renders deep parts of the ice shelf particularly vulnerable to changes in ocean properties.


2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


1975 ◽  
Vol 15 (73) ◽  
pp. 103-111 ◽  
Author(s):  
V. I. Morgan ◽  
W. F. Budd

AbstractSeveral seasons of aerial ice-thickness soundings over the region of the Prince Charles Mountains, the Lambert Glacier system, the Amery Ice Shelf, and their drainage basin in east Antarctica have now been completed. The measurements provide detailed maps of surface topography and ice thickness over an area of about 2 X 105 km2. The equipment used consisted of a 100 MHz echo sounder designed and constructed by Antarctic Division and carried in a Pilatus Porter aircraft. ERTS imagery provides a valuable background for portraying the echo-sounding results. These results show that an extensive, deep subglacial valley system forms the basis of the large drainage basin with concave ice surface topography which channels the ice flow into the Amery Ice Shelf. Deep glacial streams penetrate a long way into the ice-sheet basin. The rock relief is considerable, varying from 3 000 m above (present) sea-level to 2 000 m below sea-level. A very deep subglacial trench exists in the region of the confluence of the Fisher, Mellor, and Lambert Glaciers where the ice thickness reaches 2 500 m. The low surface slope and high ice velocity are suggestive of high melt production in this region. The strong echo, together with the high bedrock back-slope, suggests that the deep trench may contain a basal melt lake.


2020 ◽  
Vol 66 (260) ◽  
pp. 1064-1078
Author(s):  
Vikram Goel ◽  
Kenichi Matsuoka ◽  
Cesar Deschamps Berger ◽  
Ian Lee ◽  
Jørgen Dall ◽  
...  

AbstractIce rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.


2000 ◽  
Vol 46 (155) ◽  
pp. 561-570 ◽  
Author(s):  
Helen A. Fricker ◽  
Roland C. Warner ◽  
Ian Allison

AbstractWe combine European Remote-sensing Satellite (ERS-1) radar altimeter surface elevations (Fricker and others, 2000) with six different accumulation distributions to compute balance fluxes for the Lambert Glacier–Amery Ice Shelf drainage system. These interpolated balance fluxes are compared with fluxes derived from in situ measurements of ice thickness and velocity at 73 stations of the Lambert Glacier basin traverse and at 11 stations further downstream, to assess the system’s state of balance. For the upstream line we obtain a range of imbalance estimates, from −23.8% to +19.9% of the observed flux, reflecting the sensitivity to the accumulation distributions. For some of the accumulation distributions the imbalance estimates vary significantly between different parts of the line. Imbalance estimates for the downstream line range from −17.7% to +70.2%, with four of the estimates exceeding +30%, again reflecting the sensitivity of the result to input accumulation, and strongly suggesting that the mass balance of the region between the two lines is positive. Our results confirm the importance of accurate estimates of accumulation in ice-sheet mass-balance studies. Furthermore, they suggest that it is not possible to accurately determine the state of balance of large Antarctic drainage basins on the basis of currently available accumulation distributions.


2015 ◽  
Vol 9 (5) ◽  
pp. 5647-5680
Author(s):  
R. Drews ◽  
J. Brown ◽  
K. Matsuoka ◽  
E. Witrant ◽  
M. Philippe ◽  
...  

Abstract. The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g. temperature and surface mass balance) causing spatial and temporal variations in density–depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar datasets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. Using a novel algorithm including traveltime inversion and raytracing with a prescribed shape of the depth–density relationship, we show that the depth to internal reflectors, the local ice thickness and depth-averaged densities can reliably be reconstructed. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggests that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals 10 % denser firn inside compared to outside the channel. The denser firn in the ice-shelf channel should be accounted for when using the hydrostatic ice thickness for determining basal melt rates. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.


2015 ◽  
Vol 11 (1) ◽  
pp. 377-405 ◽  
Author(s):  
F. Parrenin ◽  
S. Fujita ◽  
A. Abe-Ouchi ◽  
K. Kawamura ◽  
V. Masson-Delmotte ◽  
...  

Abstract. Documenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice sheet contribution to global mean sea level. Here we reconstruct the past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronisation of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 years, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, decreasing during cold periods and increasing during warm periods. While past climatic changes have been depicted as homogeneous along the East Antarctic Plateau, our results reveal larger amplitudes of changes in SMB at EDC compared to DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared to DF. Within interglacial periods and during the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 30% from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends. These SMB ratio changes not closely related to isotopic changes are one of the possible causes of the observed gaps between the ice core chronologies at DF and EDC. Such changes in SMB ratio may have been caused by (i) climatic processes related to changes in air mass trajectories and local climate, (ii) glaciological processes associated with relative elevation changes, or (iii) a combination of climatic and glaciological processes, such as the interaction between changes in accumulation and in the position of the domes. Our inferred SMB ratio history has important implications for ice sheet modeling (for which SMB is a boundary condition) or atmospheric modeling (our inferred SMB ratio could serve as a test).


Sign in / Sign up

Export Citation Format

Share Document