Mineral Abundances Inferred From In Situ Reflectance Measurements of Chang'E‐4 Landing Site in South Pole‐Aitken Basin

2019 ◽  
Vol 46 (16) ◽  
pp. 9439-9447 ◽  
Author(s):  
Xiaoyi Hu ◽  
Pei Ma ◽  
Yazhou Yang ◽  
Meng‐Hua Zhu ◽  
Te Jiang ◽  
...  
2007 ◽  
Vol 4 (4) ◽  
pp. 2441-2491 ◽  
Author(s):  
M. S. Twardowski ◽  
H. Claustre ◽  
S. A. Freeman ◽  
D. Stramski ◽  
Y. Huot

Abstract. During the BIOSOPE field campaign October–December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over ~8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10−5, 5×10−6, and 2×10−6 m−1 sr−1, respectively. These values were approximately 6%, 3%, and 3% of the scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: – bbp distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; – Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; – accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1 + 0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and – closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: – The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; – Distributions of particulate backscattering bbp across the central gyre exhibited a broad particle peak centered ~100 m; – The particulate backscattering ratio typically ranged between 0.4% and 0.6% through the majority of the central gyre from the surface to ~210 m, indicative of "soft" water-filled particles with low bulk refractive index; and – bbp at 532 and 650 nm showed a distinct secondary deeper layer centered ~230 m that was absent in particulate attenuation cp data. The particulate backscattering ratio was significantly higher in this layer than in the rest of the water column, reaching 1.2% in some locations. This high relative backscattering, along with the pigment composition and ecological niche of this layer, appear to be consistent with the coccolithophorid F. profunda. Moreover, results were consistent with several expectations extrapolated from theory and previous work in oceanic and coastal regions, supporting the conclusion that particulate and total backscattering could be resolved in these extremely clear natural waters.


2020 ◽  
Vol 49 (5) ◽  
pp. 20190460
Author(s):  
王振超 Zhenchao Wang ◽  
柳稼航 Jiahang Liu ◽  
盛庆红 Qinghong Sheng ◽  
吴昀昭 Yunzhao Wu

2020 ◽  
Vol 12 (19) ◽  
pp. 3211
Author(s):  
Xiaobin Qi ◽  
Zongcheng Ling ◽  
Jiang Zhang ◽  
Jian Chen ◽  
Haijun Cao ◽  
...  

Until 29 May 2020, the Visible and Near-Infrared Imaging Spectrometer (VNIS) onboard the Yutu-2 Rover of the Chang’e-4 (CE-4) has acquired 96 high-resolution surface in-situ imaging spectra. These spectra were acquired under different illumination conditions, thus photometric normalization should be conducted to correct the introduced albedo differences before deriving the quantitative mineralogy for accurate geologic interpretations. In this study, a Lommel–Seeliger (LS) model and Hapke radiative transfer (Hapke) model were used and empirical phase functions of the LS model were derived. The values of these derived phase functions exhibit declining trends with the increase in phase angles and the opposition effect and phase reddening effect were observed. Then, we discovered from in-situ and laboratory measurements that the shadows caused by surface roughness have significant impacts on reflectance spectra and proper corrections were introduced. The validations of different phase functions showed that the maximum discrepancy at 1500 nm of spectra corrected by the LS model was less (~3.7%) than that by the Hapke model (~7.4%). This is the first time that empirical phase functions have been derived for a wavelength from 450 to 2395 nm using in-situ visible and near-infrared spectral datasets. Generally, photometrically normalized spectra exhibit smaller spectral slopes, lower FeO contents and larger optical maturity parameter (OMAT) than spectra without correction. In addition, the band centers of the 1 and 2 μm absorption features of spectra after photometric normalization exhibit a more concentrated distribution, indicating the compositional homogeneity of soils at the CE-4 landing site.


2019 ◽  
Vol 124 (8) ◽  
pp. 2168-2177
Author(s):  
Detian Li ◽  
Yi Wang ◽  
He Zhang ◽  
Jianhong Zhuang ◽  
Xiaojun Wang ◽  
...  

2007 ◽  
Vol 4 (6) ◽  
pp. 1041-1058 ◽  
Author(s):  
M. S. Twardowski ◽  
H. Claustre ◽  
S. A. Freeman ◽  
D. Stramski ◽  
Y. Huot

Abstract. During the BIOSOPE field campaign October–December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over 8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, βt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m−1 sr−1, respectively. These values were approximately 6%, 3%, and 3% of the volume scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: – distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; – Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; – accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1+0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and – closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: –The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; –Distributions of particulate backscattering bbp across the central gyre exhibited a broad particle peak centered ~100 m; –The particulate backscattering ratio typically ranged between 0.4% and 0.6% at 650 nm through the majority of the central gyre from the surface to ~210 m, indicative of "soft" water-filled particles with low bulk refractive index; and – bbp showed a distinct secondary deeper layer centered ~230 m that was absent in particulate attenuation cp data. The particulate backscattering ratio was significantly higher in this layer than in the rest of the water column, reaching 1.2% in some locations. This high relative backscattering, along with the pigment composition and ecological niche of this layer, appear to be consistent with the coccolithophorid Florisphaera profunda. Moreover, results were consistent with several expectations extrapolated from theory and previous work in oceanic and coastal regions, supporting the conclusion that particulate and total backscattering could be resolved in these extremely clear natural waters.


2015 ◽  
Vol 112 (17) ◽  
pp. 5342-5347 ◽  
Author(s):  
Jinhai Zhang ◽  
Wei Yang ◽  
Sen Hu ◽  
Yangting Lin ◽  
Guangyou Fang ◽  
...  

We report the surface exploration by the lunar rover Yutu that landed on the young lava flow in the northeastern part of the Mare Imbrium, which is the largest basin on the nearside of the Moon and is filled with several basalt units estimated to date from 3.5 to 2.0 Ga. The onboard lunar penetrating radar conducted a 114-m-long profile, which measured a thickness of ∼5 m of the lunar regolith layer and detected three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest underestimation of the global lunar regolith thickness by other methods and reveal a vast volume of the last volcano eruption. The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite-rich mantle reservoir and then assimilated by 10–20% of the last residual melt of the lunar magma ocean.


2016 ◽  
Vol 27 (4) ◽  
pp. 707-715 ◽  
Author(s):  
Le Qiao ◽  
Zhiyong Xiao ◽  
Jiannan Zhao ◽  
Long Xiao

1995 ◽  
Vol 9 (4) ◽  
pp. 471-476 ◽  
Author(s):  
A. Joiner ◽  
N.M. Jones ◽  
S.J. Raven

In order to understand the factors of extrinsic stain formation more fully, we have developed an in situ stain model. This consists of polished bovine enamel blocks attached to partial or full dentures worn by adult volunteers for 24 h per day. The dentures were cleaned twice daily with a commercial dentifrice and toothbrush, with care taken to avoid brushing the inserts. A Minolta CR321 Chroma Meter in the L*a*b* mode was used for taking reflectance measurements of the stain formed on the enamel inserts. From these values, changes in the color of the inserts were calculated and the level of stain determined. In general, the stain formed on the enamel inserts was yellow and increased in intensity and darkness with time. The enamel inserts with the largest stain increases were from smokers rather than non-smokers. No correlation was observed between amount of stain and quantity of tea and coffee consumed. When the effects of surface roughness on in situ stain formation were considered, the major variable in this study was found to be the location of the enamel insert in the denture rather than the surface roughness.


2015 ◽  
Vol 42 (20) ◽  
pp. 8312-8319 ◽  
Author(s):  
Weidong Jin ◽  
Hao Zhang ◽  
Ye Yuan ◽  
Yazhou Yang ◽  
Yuriy G. Shkuratov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document