Subsurface structures at the Chang’e-3 landing site: Interpretations from orbital and in-situ imagery data

2016 ◽  
Vol 27 (4) ◽  
pp. 707-715 ◽  
Author(s):  
Le Qiao ◽  
Zhiyong Xiao ◽  
Jiannan Zhao ◽  
Long Xiao
2021 ◽  
Author(s):  
Jianjun Liu ◽  
Chunlai Li ◽  
Rongqiao Zhang ◽  
Wei Rao ◽  
Xiaofeng Cui ◽  
...  

AbstractAs part of the Tianwen-1 mission, the Zhurong rover successfully touched down in southern Utopia Planitia on 15 May 2021. On the basis of the new sub-metre-resolution images from the High Resolution Imaging Camera on board the Tianwen-1 orbiter, we determined that the Zhurong rover landed at 109.925° E, 25.066° N at an elevation of −4,099.4 m. The landing site is near the highland–lowland boundary1 and multiple suspected shorelines2–7. Under the guidance of the remote sensing survey, the Zhurong rover is travelling south for specific in situ investigation. Supported by the six payloads on board the rover8, its initial key targets are rocks, rocky fields, transverse aeolian ridges and subsurface structures along the path. Extended investigation will aim at troughs and cones in the distance. A better understanding of the formation mechanisms of these targets may shed light on the historical volcanism and water/ice activities within the landing area, as well as the activities of the wind. These results may reveal the characteristics and evolution of the ancient Martian environment and advance the exploration of the habitability of ancient Mars.


2020 ◽  
Vol 49 (5) ◽  
pp. 20190460
Author(s):  
王振超 Zhenchao Wang ◽  
柳稼航 Jiahang Liu ◽  
盛庆红 Qinghong Sheng ◽  
吴昀昭 Yunzhao Wu

2020 ◽  
Vol 12 (19) ◽  
pp. 3211
Author(s):  
Xiaobin Qi ◽  
Zongcheng Ling ◽  
Jiang Zhang ◽  
Jian Chen ◽  
Haijun Cao ◽  
...  

Until 29 May 2020, the Visible and Near-Infrared Imaging Spectrometer (VNIS) onboard the Yutu-2 Rover of the Chang’e-4 (CE-4) has acquired 96 high-resolution surface in-situ imaging spectra. These spectra were acquired under different illumination conditions, thus photometric normalization should be conducted to correct the introduced albedo differences before deriving the quantitative mineralogy for accurate geologic interpretations. In this study, a Lommel–Seeliger (LS) model and Hapke radiative transfer (Hapke) model were used and empirical phase functions of the LS model were derived. The values of these derived phase functions exhibit declining trends with the increase in phase angles and the opposition effect and phase reddening effect were observed. Then, we discovered from in-situ and laboratory measurements that the shadows caused by surface roughness have significant impacts on reflectance spectra and proper corrections were introduced. The validations of different phase functions showed that the maximum discrepancy at 1500 nm of spectra corrected by the LS model was less (~3.7%) than that by the Hapke model (~7.4%). This is the first time that empirical phase functions have been derived for a wavelength from 450 to 2395 nm using in-situ visible and near-infrared spectral datasets. Generally, photometrically normalized spectra exhibit smaller spectral slopes, lower FeO contents and larger optical maturity parameter (OMAT) than spectra without correction. In addition, the band centers of the 1 and 2 μm absorption features of spectra after photometric normalization exhibit a more concentrated distribution, indicating the compositional homogeneity of soils at the CE-4 landing site.


2019 ◽  
Vol 46 (16) ◽  
pp. 9439-9447 ◽  
Author(s):  
Xiaoyi Hu ◽  
Pei Ma ◽  
Yazhou Yang ◽  
Meng‐Hua Zhu ◽  
Te Jiang ◽  
...  

2019 ◽  
Vol 124 (8) ◽  
pp. 2168-2177
Author(s):  
Detian Li ◽  
Yi Wang ◽  
He Zhang ◽  
Jianhong Zhuang ◽  
Xiaojun Wang ◽  
...  

2015 ◽  
Vol 112 (17) ◽  
pp. 5342-5347 ◽  
Author(s):  
Jinhai Zhang ◽  
Wei Yang ◽  
Sen Hu ◽  
Yangting Lin ◽  
Guangyou Fang ◽  
...  

We report the surface exploration by the lunar rover Yutu that landed on the young lava flow in the northeastern part of the Mare Imbrium, which is the largest basin on the nearside of the Moon and is filled with several basalt units estimated to date from 3.5 to 2.0 Ga. The onboard lunar penetrating radar conducted a 114-m-long profile, which measured a thickness of ∼5 m of the lunar regolith layer and detected three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest underestimation of the global lunar regolith thickness by other methods and reveal a vast volume of the last volcano eruption. The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite-rich mantle reservoir and then assimilated by 10–20% of the last residual melt of the lunar magma ocean.


2015 ◽  
Vol 42 (20) ◽  
pp. 8312-8319 ◽  
Author(s):  
Weidong Jin ◽  
Hao Zhang ◽  
Ye Yuan ◽  
Yazhou Yang ◽  
Yuriy G. Shkuratov ◽  
...  

2021 ◽  
Author(s):  
Agata Krzesinska ◽  
Benjamin Bultel ◽  
Damien Loizeau ◽  
David Craw ◽  
Richard April ◽  
...  

<p>In 2022, ESA/ROSCOSMOS will launch the ExoMars2022 rover mission to Mars. The selected landing site for the mission is Oxia Planum, a wide, Noachian-age, phyllosilicate-bearing plain located on the SE border of Chryse Planitia. The Fe,Mg-rich clay mineral deposits at Oxia Planum are one of the largest exposures of this type on Mars, with a thickness of more than 10 m. They clearly record complex water-rock interactions and as such are a promising target to answer scientific questions posed by the ExoMars 2022 mission pertaining to the history of water and the geochemical environment in the shallow Martian subsurface, and the ancient and present habitability of the planet.</p><p>From the spectral analysis by CRISM and OMEGA, bedrock deposits at Oxia appear to contain vermiculite, a hydrous 2:1 phyllosilicate. But the exact mineralogy of the deposits and their origin is not yet fully understood. To fill this gap, and to better prepare for in-situ analyses by the ExoMars2022 rover, we performed a survey of potential terrestrial analog rocks by determining their mineralogy and NIR spectra for comparison with CRISM and OMEGA spectra of bedrock deposits at Oxia. The study focused on Fe-rich, trioctahedral vermiculite.</p><p>Two terrestrial sites were identified and studied: Otago, New Zealand with vermiculitized chlorite-schists that underwent alteration without significant oxidation; and Granby, Massachusetts with basaltic tuffs containing Fe-rich clays of apparent hydrothermal origin filling amygdales. Both analogues have been added to a newly built Planetary Terrestrial Analogue Library (PTAL) collection. The PTAL collection aims to provide the scientific community with analogue rocks to help characterize and define the mineralogy and geochemistry of landing sites on Mars chosen for in-situ analyses (www.ptal.eu).</p><p>The analogue comparisons reveal that Oxia bedrock deposits consist of Fe-rich, trioctahedral vermiculite, which is well crystallized and probably mixed with minor saponite. Additionally, NIR data analysis suggests that the deposits were not oxidized, nor illitized after formation. Based on this study, Oxia’s bedrock deposits may have formed from: (1) hydrothermal or magma fractionation-related origin of phyllosilicates and formation as an ash-fall deposits or (2) chlorite-rich sediment transported to a basin where chlorite was subsequently altered to vermiculite under anoxic, reducing conditions. The detailed characterization of the analogues and discussion of processes inferred for the evolution of Oxia Planum will be presented during the meeting.</p><p>Vermiculite, with its high surface area and exchange capacity, has great potential to store organic compounds. The mineralogy of the bedrock deposits at Oxia, along with the anoxic, reducing conditions that might have been prevalent during Noachian time would be advantageous for retaining and preserving organic matter and make it a promising site for future analysis.</p>


Sign in / Sign up

Export Citation Format

Share Document