scholarly journals Pacific Modulation of the North Atlantic Storm Track Response to Sudden Stratospheric Warming Events

2020 ◽  
Vol 47 (2) ◽  
Author(s):  
Hilla Afargan‐Gerstman ◽  
Daniela I. V. Domeisen
2020 ◽  
Vol 1 (2) ◽  
pp. 373-388 ◽  
Author(s):  
Daniela I. V. Domeisen ◽  
Christian M. Grams ◽  
Lukas Papritz

Abstract. Sudden stratospheric warming (SSW) events can significantly impact tropospheric weather for a period of several weeks, in particular in the North Atlantic–European (NAE) region. While the stratospheric forcing often projects onto the North Atlantic Oscillation (NAO), the tropospheric response to SSW events, if any, is highly variable, and what determines the existence, location, timing, and strength of the downward impact remains an open question. We here explore how the variable tropospheric response to SSW events in the NAE region can be characterized in terms of a refined set of seven weather regimes and if the tropospheric flow in the North Atlantic region around the onset of SSW events is an indicator of the subsequent downward impact. The weather regime analysis reveals the Greenland blocking (GL) and Atlantic trough (AT) regimes as the most frequent large-scale patterns in the weeks following an SSW. While the GL regime is dominated by high pressure over Greenland, AT is dominated by a southeastward-shifted storm track in the North Atlantic. The flow evolution associated with GL and the associated cold conditions over Europe in the weeks following an SSW occur most frequently if a blocking situation over western Europe and the North Sea (European blocking) prevailed around the SSW onset. In contrast, an AT regime associated with mild conditions over Europe is more likely following the SSW event if GL occurs already around SSW onset. For the remaining tropospheric flow regimes during SSW onset we cannot identify a dominant flow evolution. Although it remains unclear what causes these relationships, the results suggest that specific tropospheric states in the days around the onset of the SSW are an indicator of the subsequent tropospheric flow evolution in the aftermath of an SSW, which could provide crucial guidance for subseasonal prediction.


2020 ◽  
Author(s):  
Daniela I. V. Domeisen ◽  
Christian M. Grams ◽  
Lukas Papritz

Abstract. Sudden stratospheric warming (SSW) events can significantly impact tropospheric weather for a period of several weeks, in particular over the North Atlantic and Europe. However, not all SSW events exhibit the same tropospheric response, if any, and it remains an open question what determines the existence, location, timing, and strength of the downward impact. We here explore the role of the state of the tropospheric flow in the North Atlantic region at the onset of SSW events for determining the subsequent surface impact. A refined definition of seven North Atlantic tropospheric weather regimes indicates the Greenland blocking (GL) and Atlantic Trough (AT) regimes as the most frequent large-scale patterns following the weeks after an SSW. While GL is dominated by high pressure over Greenland, AT is dominated by a southeastward shifted storm track in the North Atlantic. We find that a blocking situation over western Europe and the North Sea (European Blocking) at the time of the SSW onset favours the GL response and the associated cold conditions over Europe. In contrast, an AT response and mild conditions are more likely if GL occurs already at SSW onset. For the remaining tropospheric flow regimes during SSW onset, we find no clear response. The results indicate that the tropospheric impact of SSW events critically depends on the tropospheric state during the onset of the SSW, which could provide crucial guidance for subseasonal prediction.


2009 ◽  
Vol 22 (5) ◽  
pp. 1223-1238 ◽  
Author(s):  
Chiara Cagnazzo ◽  
Elisa Manzini

Abstract The possible role of stratospheric variability on the tropospheric teleconnection between El Niño–Southern Oscillation (ENSO) and the North Atlantic and European (NAE) region is addressed by comparing results from two ensembles of simulations performed with an atmosphere general circulation model fully resolving the stratosphere (with the top at 0.01 hPa) and its low-top version (with the top at 10 hPa). Both ensembles of simulations consist of nine members, covering the 1980–99 period and are forced with prescribed observed sea surface temperatures. It is found that both models capture the sensitivity of the averaged polar winter lower stratosphere to ENSO in the Northern Hemisphere, although with a reduced amplitude for the low-top model. In late winter and spring, the ENSO response at the surface is instead different in the two models. A large-scale coherent pattern in sea level pressure, with high pressures over the Arctic and low pressures over western and central Europe and the North Pacific, is found in the February–March mean of the high-top model. In the low-top model, the Arctic high pressure and the western and central Europe low pressure are very much reduced. The high-top minus low-top model difference in the ENSO temperature and precipitation anomalies is that North Europe is colder and the Northern Atlantic storm track is shifted southward in the high-top model. In addition, it has been found that major sudden stratospheric warming events are virtually lacking in the low-top model, while their frequency of occurrence is broadly realistic in the high-top model. Given that this is a major difference in the dynamical behavior of the stratosphere of the two models and that these events are favored by ENSO, it is concluded that the occurrence of sudden stratospheric warming events affects the reported differences in the tropospheric ENSO–NAE teleconnection. Given that the essence of the high-top minus low-top model difference is a more annular (or zonal) pattern of the anomaly in sea level pressure, relatively larger over the Arctic and the NAE regions, this interpretation is consistent with the observational evidence that sudden stratospheric warmings play a role in giving rise to persistent Arctic Oscillation anomalies at the surface.


2020 ◽  
Author(s):  
Hilla Afargan-Gerstman ◽  
Bernat Jiménez-Esteve ◽  
Daniela I.V. Domeisen

<p>Sudden stratospheric warming (SSW) events are often followed by a surface impact, most commonly by a negative phase of the North Atlantic Oscillation (NAO). Recent work has emphasized the large variability among the tropospheric response after these events, showing that only about two thirds of the SSWs are dominated by this canonical negative NAO response. In this study, we use an idealized atmospheric model forced with seasonally varying sea surface temperatures to examine the influence of the pre-existing tropospheric conditions on the North Atlantic response to stratospheric forcing. In the model, the negative phase of the NAO is found to be the most common response to SSWs, occurring after ~85% of the SSWs (under climatological SST forcing).  For the remaining ~15% of the SSW events, the response is associated with a positive phase of the NAO. In the search for the origin of the different tropospheric response in the North Atlantic, the role of synoptic wave propagation from the eastern Pacific on the downward response to SSWs is investigated. By systematically varying the strength of the North Pacific circulation, we are able to assess the sensitivity of the downward response to tropospheric variability in the Pacific, and shed light on its contribution to the persistence of the downward impact of SSWs in the idealized model.</p>


2007 ◽  
Vol 20 (12) ◽  
pp. 2721-2744 ◽  
Author(s):  
Peter G. Baines ◽  
Chris K. Folland

Abstract It is shown that a number of important characteristics of the global atmospheric circulation and climate changed in a near-monotonic fashion over the decade, or less, centered on the late 1960s. These changes were largest or commonest in tropical regions, the Southern Hemisphere, and the Atlantic sector of the Northern Hemisphere. Some, such as the decrease in rainfall in the African Sahel, are well known. Others appear to be new, but their combined extent is global and dynamical linkages between them are evident. The list of affected variables includes patterns of SST; tropical rainfall in the African Sahel and Sudan, the Amazon basin, and northeast Brazil; pressure and SST in the tropical North Atlantic and the west and central Pacific; various branches of the southern Hadley circulation and the southern subtropical jet stream; the summer North Atlantic Oscillation; south Greenland temperature; the Southern Hemisphere storm track; and, quite likely, the Antarctic sea ice boundary. These changes are often strongest in the June–August season; changes are also seen in December–February but are generally smaller. In Greenland, annual mean temperature seems to be affected strongly, reflecting similar changes in SST throughout the year in the higher latitudes of the North Atlantic. Possible causes for these coordinated changes are briefly evaluated. The most likely candidates appear to be a likely reduction in the northward oceanic heat flux associated with the North Atlantic thermohaline circulation in the 1950s to 1970s, which was nearly in phase with a rapid increase in anthropogenic aerosol emissions during the 1950s and 1960s, particularly over Europe and North America.


2012 ◽  
Vol 69 (12) ◽  
pp. 3763-3787 ◽  
Author(s):  
Dehai Luo ◽  
Jing Cha

Abstract In this paper, precursors to the North Atlantic Oscillation (NAO) and its transitions are investigated to understand the dynamical cause of the interdecadal NAO variability from dominant negative (NAO−) events during 1950–77 (P1) to dominant positive (NAO+) events during 1978–2010 (P2). It is found that the phase of the NAO event depends strongly on the latitudinal position of the North Atlantic jet (NAJ) prior to the NAO onset. The NAO− (NAO+) events occur frequently when the NAJ core prior to the NAO onset is displaced southward (northward), as the situation within P1 (P2). Thus, the northward (southward) shift of the NAJ from its mean position is a precursor to the NAO+ (NAO−) event. This finding is further supported by results obtained from a weakly nonlinear model. Furthermore, the model results show that, when the Atlantic mean zonal wind exceeds a critical strength under which the dipole anomaly prior to the NAO onset is stationary, in situ NAO− (NAO+) events, which are events not preceded by opposite events, can occur frequently during P1 (P2) when the Atlantic storm track is not too strong. This mean zonal wind condition is easily satisfied during P1 and P2. However, when the Atlantic storm track (mean zonal wind) prior to the NAO onset is markedly intensified (weakened), the NAO event can undergo a transition from one phase to another, especially in a relatively strong background westerly wind, the Atlantic storm track has to be strong enough to produce a phase transition.


2015 ◽  
Vol 72 (2) ◽  
pp. 821-833 ◽  
Author(s):  
Lenka Novak ◽  
Maarten H. P. Ambaum ◽  
Rémi Tailleux

Abstract The North Atlantic eddy-driven jet exhibits latitudinal variability with evidence of three preferred latitudinal locations: south, middle, and north. Here the authors examine the drivers of this variability and the variability of the associated storm track. The authors investigate the changes in the storm-track characteristics for the three jet locations and propose a mechanism by which enhanced storm-track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy, which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. The authors’ results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet-deflecting effect was found to operate most prominently downstream of the storm-track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm-track characteristics can be viewed as different stages of the storm track’s spatiotemporal life cycle.


2007 ◽  
Vol 3 (2) ◽  
pp. 181-192 ◽  
Author(s):  
F. Kaspar ◽  
T. Spangehl ◽  
U. Cubasch

Abstract. Climate simulations of the Eemian interglacial and the last glacial inception have been performed by forcing a coupled ocean-atmosphere general circulation model with insolation patterns of these periods. The parameters of the Earth's orbit have been set to conditions of 125 000 and 115 000 years before present (yr BP). Compared to today, these dates represent periods with enhanced and weakened seasonality of insolation in the northern hemisphere. Here we analyse the simulated change in northern hemisphere winter storm tracks. The change in the orbital configuration has a strong impact on the meridional temperature gradients and therefore on strength and location of the storm tracks. The North Atlantic storm track is strengthened, shifted northward and extends further to the east in the simulation for the Eemian at 125 kyr BP. As one consequence, the northern parts of Europe experience an increase in winter precipitation. The frequency of winter storm days increases over large parts of the North Atlantic including the British Isles and the coastal zones of north-western Europe. Opposite but weaker changes in storm track activity are simulated for 115 kyr BP.


2018 ◽  
Vol 31 (15) ◽  
pp. 5793-5810 ◽  
Author(s):  
Mi-Kyung Sung ◽  
Seon-Hwa Kim ◽  
Baek-Min Kim ◽  
Yong-Sang Choi

This study investigates the origin of the interdecadal variability in the warm Arctic and cold Eurasia (WACE) pattern, which is defined as the second empirical orthogonal function of surface air temperature (SAT) variability over the Eurasian continent in Northern Hemisphere winter, by analyzing the Twentieth Century Reanalysis dataset. While previous studies highlight recent enhancement of the WACE pattern, ascribing it to anthropogenic warming, the authors found that the WACE pattern has experienced a seemingly periodic interdecadal variation over the twentieth century. This long-term variation in the Eurasian SAT is attributable to the altered coupling between the Siberian high (SH) and intraseasonal Rossby wave emanating from the North Atlantic, as the local wave branch interacts with the SH and consequentially enhances the continental temperature perturbation. It is further identified that these atmospheric circulation changes in Eurasia are largely controlled by the decadal amplitude modulation of the climatological stationary waves over the North Atlantic region. The altered decadal mean condition of stationary wave components brings changes in local baroclinicity and storm track activity over the North Atlantic, which jointly change the intraseasonal Rossby wave generation and propagation characteristics as well. With simple stationary wave model experiments, the authors confirm how the altered mean flow condition in the North Atlantic acts as a source for the growth of the Rossby wave that leads to the change in the downstream WACE pattern.


Sign in / Sign up

Export Citation Format

Share Document