scholarly journals The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events

2020 ◽  
Vol 1 (2) ◽  
pp. 373-388 ◽  
Author(s):  
Daniela I. V. Domeisen ◽  
Christian M. Grams ◽  
Lukas Papritz

Abstract. Sudden stratospheric warming (SSW) events can significantly impact tropospheric weather for a period of several weeks, in particular in the North Atlantic–European (NAE) region. While the stratospheric forcing often projects onto the North Atlantic Oscillation (NAO), the tropospheric response to SSW events, if any, is highly variable, and what determines the existence, location, timing, and strength of the downward impact remains an open question. We here explore how the variable tropospheric response to SSW events in the NAE region can be characterized in terms of a refined set of seven weather regimes and if the tropospheric flow in the North Atlantic region around the onset of SSW events is an indicator of the subsequent downward impact. The weather regime analysis reveals the Greenland blocking (GL) and Atlantic trough (AT) regimes as the most frequent large-scale patterns in the weeks following an SSW. While the GL regime is dominated by high pressure over Greenland, AT is dominated by a southeastward-shifted storm track in the North Atlantic. The flow evolution associated with GL and the associated cold conditions over Europe in the weeks following an SSW occur most frequently if a blocking situation over western Europe and the North Sea (European blocking) prevailed around the SSW onset. In contrast, an AT regime associated with mild conditions over Europe is more likely following the SSW event if GL occurs already around SSW onset. For the remaining tropospheric flow regimes during SSW onset we cannot identify a dominant flow evolution. Although it remains unclear what causes these relationships, the results suggest that specific tropospheric states in the days around the onset of the SSW are an indicator of the subsequent tropospheric flow evolution in the aftermath of an SSW, which could provide crucial guidance for subseasonal prediction.

2020 ◽  
Author(s):  
Daniela I. V. Domeisen ◽  
Christian M. Grams ◽  
Lukas Papritz

Abstract. Sudden stratospheric warming (SSW) events can significantly impact tropospheric weather for a period of several weeks, in particular over the North Atlantic and Europe. However, not all SSW events exhibit the same tropospheric response, if any, and it remains an open question what determines the existence, location, timing, and strength of the downward impact. We here explore the role of the state of the tropospheric flow in the North Atlantic region at the onset of SSW events for determining the subsequent surface impact. A refined definition of seven North Atlantic tropospheric weather regimes indicates the Greenland blocking (GL) and Atlantic Trough (AT) regimes as the most frequent large-scale patterns following the weeks after an SSW. While GL is dominated by high pressure over Greenland, AT is dominated by a southeastward shifted storm track in the North Atlantic. We find that a blocking situation over western Europe and the North Sea (European Blocking) at the time of the SSW onset favours the GL response and the associated cold conditions over Europe. In contrast, an AT response and mild conditions are more likely if GL occurs already at SSW onset. For the remaining tropospheric flow regimes during SSW onset, we find no clear response. The results indicate that the tropospheric impact of SSW events critically depends on the tropospheric state during the onset of the SSW, which could provide crucial guidance for subseasonal prediction.


2006 ◽  
Vol 134 (8) ◽  
pp. 2224-2240 ◽  
Author(s):  
Pascal J. Mailier ◽  
David B. Stephenson ◽  
Christopher A. T. Ferro ◽  
Kevin I. Hodges

Abstract The clustering in time (seriality) of extratropical cyclones is responsible for large cumulative insured losses in western Europe, though surprisingly little scientific attention has been given to this important property. This study investigates and quantifies the seriality of extratropical cyclones in the Northern Hemisphere using a point-process approach. A possible mechanism for serial clustering is the time-varying effect of the large-scale flow on individual cyclone tracks. Another mechanism is the generation by one “parent” cyclone of one or more “offspring” through secondary cyclogenesis. A long cyclone-track database was constructed for extended October–March winters from 1950 to 2003 using 6-h analyses of 850-mb relative vorticity derived from the NCEP–NCAR reanalysis. A dispersion statistic based on the variance-to-mean ratio of monthly cyclone counts was used as a measure of clustering. It reveals extensive regions of statistically significant clustering in the European exit region of the North Atlantic storm track and over the central North Pacific. Monthly cyclone counts were regressed on time-varying teleconnection indices with a log-linear Poisson model. Five independent teleconnection patterns were found to be significant factors over Europe: the North Atlantic Oscillation (NAO), the east Atlantic pattern, the Scandinavian pattern, the east Atlantic–western Russian pattern, and the polar–Eurasian pattern. The NAO alone is not sufficient for explaining the variability of cyclone counts in the North Atlantic region and western Europe. Rate dependence on time-varying teleconnection indices accounts for the variability in monthly cyclone counts, and a cluster process did not need to be invoked.


2009 ◽  
Vol 66 (9) ◽  
pp. 2539-2558 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.


2020 ◽  
Vol 146 (728) ◽  
pp. 1184-1205 ◽  
Author(s):  
Matthew D. K. Priestley ◽  
Helen F. Dacre ◽  
Len C. Shaffrey ◽  
Sebastian Schemm ◽  
Joaquim G. Pinto

2009 ◽  
Vol 66 (2) ◽  
pp. 332-352 ◽  
Author(s):  
Edwin P. Gerber ◽  
Geoffrey K. Vallis

Abstract The zonal structure and dynamics of the dipolar patterns of intraseasonal variability in the extratropical atmosphere—namely, the North Atlantic Oscillation (NAO) and the so-called annular modes of variability—are investigated in an idealized general circulation model. Particular attention is focused on the relationships linking the zonal structure of the stationary waves, synoptic variability (i.e., the storm tracks), and the zonal structure of the patterns of intraseasonal variability. Large-scale topography and diabatic anomalies are introduced to modify and concentrate the synoptic variability, establishing a recipe for a localized storm track. Comparison of the large-scale forcing, synoptic variability, and patterns of intraseasonal variability suggests a nonlinear relationship between the large-scale forcing and the variability. It is found that localized NAO-like patterns arise from the confluence of topographic and diabatic forcing and that the patterns are more localized than one would expect based on superposition of the responses to topography and thermal forcing alone. The connection between the eddy life cycle of growth and decay and the localization of the intraseasonal variability is investigated. Both the termination of the storm track and the localization of the intraseasonal variability in the GCM depend on a difluent region of weak upper-level flow, where eddies break and dissipate rather than propagate energy forward through downstream development. The authors' interpretation suggests that the North Atlantic storm track and the NAO are two manifestations of the same phenomenon. Conclusions from the GCM study are critiqued by comparison with observations.


2015 ◽  
Vol 72 (3) ◽  
pp. 1152-1173 ◽  
Author(s):  
Dehai Luo ◽  
Yao Yao ◽  
Aiguo Dai

Abstract Both the positive and negative phases of the North Atlantic Oscillation (NAO+ and NAO−, respectively) and atmospheric blocking in the Euro-Atlantic sector reflect synoptic variability over the region and thus are intrinsically linked. This study examines their relationship from a decadal change perspective. Since the winter-mean NAO index is defined as a time average of instantaneous NAO indices over the whole winter, it is unclear how the activity of European blocking (EB) events can be related to the variation of the positive mean NAO index. Here, this question is examined by dividing the winter period 1978–2011 into two decadal epochs: 1978–94 (P1) with an increasing and high NAO index and 1995–2011 (P2) with a decreasing and low NAO index. Using atmospheric reanalysis data, it is shown that there are more intense and persistent EB events in eastern Europe during P1 than during P2, while the opposite is true for western Europe. It is further shown that there are more NAO+ (NAO−) events during P1 (P2). The EB events associated with NAO+ events extend more eastward and are associated with stronger Atlantic mean zonal wind and weaker western Atlantic storm track during P1 than during P2, but EB events associated with NAO− events increase in western Europe under opposite Atlantic conditions during P2. Thus, the increase in the number of individual NAO+ (NAO−) events results in more EB events in eastern (western) Europe during P1 (P2). The EB change is also associated with the increased frequency of NAO− to NAO+ (NAO+ to NAO−) transition events.


2013 ◽  
Vol 141 (8) ◽  
pp. 2850-2868 ◽  
Author(s):  
Harald Sodemann ◽  
Andreas Stohl

Abstract During December 2006 many cyclones traveled across the North Atlantic, causing temperature and precipitation in Norway to be well above average. Large excursions of high vertically integrated water vapor, often referred to as atmospheric rivers, reached from the subtropics to high latitudes, inducing precipitation over western Scandinavia. The sources and transport of atmospheric water vapor in the North Atlantic storm track during that month are examined by means of a mesoscale model fitted with water vapor tracers. Decomposition of the modeled total water vapor field into numerical water vapor tracers tagged by evaporation latitude shows that when an atmospheric river was present, a higher fraction of water vapor from remote, southerly source regions caused more intense precipitation. The tracer transport analysis revealed that the atmospheric rivers were composed of a sequence of meridional excursions of water vapor, in close correspondence with the upper-level flow configuration. In cyclone cores, fast turnover of water vapor by evaporation and condensation were identified, leading to a rapid assimilation of water from the underlying ocean surface. In the regions of long-range transport, water vapor tracers from the southern midlatitudes and subtropics dominated over local contributions. By advection of water vapor along their trailing cold fronts cyclones were reinforcing the atmospheric rivers. At the same time the warm conveyor belt circulation was feeding off the atmospheric rivers by large-scale ascent and precipitation. Pronounced atmospheric rivers could persist in the domain throughout more than one cyclone's life cycle. These findings emphasize the interrelation between midlatitude cyclones and atmospheric rivers but also their distinction from the warm conveyor belt airstream.


2009 ◽  
Vol 22 (5) ◽  
pp. 1223-1238 ◽  
Author(s):  
Chiara Cagnazzo ◽  
Elisa Manzini

Abstract The possible role of stratospheric variability on the tropospheric teleconnection between El Niño–Southern Oscillation (ENSO) and the North Atlantic and European (NAE) region is addressed by comparing results from two ensembles of simulations performed with an atmosphere general circulation model fully resolving the stratosphere (with the top at 0.01 hPa) and its low-top version (with the top at 10 hPa). Both ensembles of simulations consist of nine members, covering the 1980–99 period and are forced with prescribed observed sea surface temperatures. It is found that both models capture the sensitivity of the averaged polar winter lower stratosphere to ENSO in the Northern Hemisphere, although with a reduced amplitude for the low-top model. In late winter and spring, the ENSO response at the surface is instead different in the two models. A large-scale coherent pattern in sea level pressure, with high pressures over the Arctic and low pressures over western and central Europe and the North Pacific, is found in the February–March mean of the high-top model. In the low-top model, the Arctic high pressure and the western and central Europe low pressure are very much reduced. The high-top minus low-top model difference in the ENSO temperature and precipitation anomalies is that North Europe is colder and the Northern Atlantic storm track is shifted southward in the high-top model. In addition, it has been found that major sudden stratospheric warming events are virtually lacking in the low-top model, while their frequency of occurrence is broadly realistic in the high-top model. Given that this is a major difference in the dynamical behavior of the stratosphere of the two models and that these events are favored by ENSO, it is concluded that the occurrence of sudden stratospheric warming events affects the reported differences in the tropospheric ENSO–NAE teleconnection. Given that the essence of the high-top minus low-top model difference is a more annular (or zonal) pattern of the anomaly in sea level pressure, relatively larger over the Arctic and the NAE regions, this interpretation is consistent with the observational evidence that sudden stratospheric warmings play a role in giving rise to persistent Arctic Oscillation anomalies at the surface.


Sign in / Sign up

Export Citation Format

Share Document