scholarly journals The Life Cycle of the North Atlantic Storm Track*

2015 ◽  
Vol 72 (2) ◽  
pp. 821-833 ◽  
Author(s):  
Lenka Novak ◽  
Maarten H. P. Ambaum ◽  
Rémi Tailleux

Abstract The North Atlantic eddy-driven jet exhibits latitudinal variability with evidence of three preferred latitudinal locations: south, middle, and north. Here the authors examine the drivers of this variability and the variability of the associated storm track. The authors investigate the changes in the storm-track characteristics for the three jet locations and propose a mechanism by which enhanced storm-track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy, which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. The authors’ results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet-deflecting effect was found to operate most prominently downstream of the storm-track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm-track characteristics can be viewed as different stages of the storm track’s spatiotemporal life cycle.

2007 ◽  
Vol 24 (5) ◽  
pp. 923-934 ◽  
Author(s):  
Brian S. Chinn ◽  
Sarah T. Gille

Abstract Acoustically tracked float data from 16 experiments carried out in the North Atlantic are used to evaluate the feasibility of estimating eddy heat fluxes from floats. Daily float observations were bin averaged in 2° by 2° by 200-db-deep geographic bins, and eddy heat fluxes were estimated for each bin. Results suggest that eddy heat fluxes can be highly variable, with substantial outliers that mean that fluxes do not converge quickly. If 100 statistically independent observations are available in each bin (corresponding to 500–1000 float days of data), then results predict that 80% of bins will have eddy heat fluxes that are statistically different from zero. Pop-up floats, such as Autonomous Lagrangian Circulation Explorer (ALACE) and Argo floats, do not provide daily sampling and therefore underestimate eddy heat flux. The fraction of eddy heat flux resolved using pop-up float sampling patterns decreases linearly with increasing intervals between float mapping and can be modeled analytically. This implies that flux estimates from pop-up floats may be correctable to represent true eddy heat flux.


2016 ◽  
Vol 29 (10) ◽  
pp. 3767-3785 ◽  
Author(s):  
G. Gastineau ◽  
B. L’Hévéder ◽  
F. Codron ◽  
C. Frankignoul

Abstract In climate models, an intensification of the Atlantic meridional overturning circulation (AMOC) precedes a warming in the North Atlantic subpolar basin by a few years. In the IPSL-CM5A-LR model, this warming may explain the atmospheric response to the AMOC observed in winter, which resembles a negative phase of the North Atlantic Oscillation (NAO). To firmly establish the causality links between the ocean and the atmosphere and illustrate the underlying mechanisms in this model, ensembles of atmosphere-only simulations are conducted, prescribing the SST and sea ice anomalies that follow an AMOC intensification. In late winter, the North Atlantic SST and sea ice anomalies drive atmospheric circulation anomalies similar to those found in the coupled model. Simulations only driven by the SST anomalies related to the AMOC show that the largest oceanic influence is due to the warm subpolar SST anomaly, which enhances the oceanic heat release and decreases the lower-tropospheric baroclinicity in the region of maximum eddy growth, resulting in a weaker meridional eddy heat flux in the atmosphere. The transient eddy feedback leads to a negative NAO-like response. An AMOC intensification is also followed by less sea ice over the Labrador Sea and more sea ice over the Nordic seas. The simulations with full boundary forcing suggest that such anomalies act to strengthen both the poleward momentum flux and the upward heat flux into the polar stratosphere and lead to a stratospheric warming, which then reinforces the negative NAO signal in late winter.


2021 ◽  
Author(s):  
Johanna Knauf ◽  
Joakim Kjellsson ◽  
Annika Reintges

<p>We study the impact of ocean horizontal resolution on storm tracks over the North Atlantic Ocean using the FOCI-OpenIFS climate model and the TRACK storm-tracking algorithm. We find that increasing ocean resolution from 1/2° to 1/10° reduces a cold bias over the North Atlantic which leads to a northward shift of the storm tracks, in particular in winter and spring seasons.<span> </span></p><p>Most climate models with non-eddying oceans, i.e. horizontal resolutions of 100 km or higher, suffer from a cold SST bias in the North Atlantic. Refining the horizontal resolution from 1/2° to 1/10° allows for a distinct Gulf Stream extension and better representation of the major current systems which reduces this cold bias. The associated warming of the ocean surface with increasing resolution also warms the troposphere and leads to a northward shift in the tropospheric eddy-driven jet. Overall, the increased ocean resolution thus improves the ocean circulation as well as the atmospheric circulation.<span> </span></p><p>We use two metrics to evaluate the storm track activity in the simulations. We calculate 2-8 day bandpass-filtered mean sea-level pressure (MSLP) and eddy heat flux (v’T’) which is an Eulerian metric that shows variability of low- and high-pressure systems as well as their associated heat flux, but says nothing about the genesis, lysis or life time of individual storms. We also use the TRACK storm-tracking algorithm with 12-hourly MSLP data to produce trajectories of individual storms, which allows us to study individual storms.<span> </span></p><p>The Eulerian approach using MSLP variance and eddy heat fluxes clearly shows a northward shift of the storm tracks as the ocean resolution is increased. Overall, the northward shift leads to reduced biases compared to ERA-Interim reanalysis. Storm-track trajectories show higher storm track and storm genesis densities around 60°N with the higher ocean resolution. Interestingly, a higher ocean resolution also results in longer life time of storms. We speculate that this is due to enhanced air-sea interactions where cyclones are fed more energy from the eddy-resolving ocean than from the non-eddying ocean.</p>


2020 ◽  
Author(s):  
Sebastian Schemm ◽  
Michael Sprenger

Abstract. A novel method is introduced to identify and track the life cycle of upper-level troughs and ridges. The aim is to close the existing gap between methods that detect the initiation phase of upper-level Rossby wave development and methods that detect Rossby wave breaking and decaying waves. The presented method quantifies the horizontal trough and ridge orientation and identifies the corresponding trough and ridge axes. The trough and ridge axes allow us to study the dynamics of pre- and post-trough or ridge regions separately. The tracking allows us to study the temporal evolution of the trough or ridge orientation. The method is based on the curvature of the geopotential height at a given isobaric surface and is computationally efficient. First, the algorithm is introduced in detail, and several illustrative applications, such as a downstream development from the North Atlantic into the Mediterranean, and seasonal climatologies are discussed. For example, the climatological trough and ridge orientations reveal strong zonal and meridional asymmetry. Over land, most troughs and ridges are anticyclonically oriented, while they are cyclonically oriented over the main oceanic storm tracks. The cyclonic orientation increases towards the poles, while the anticyclonic orientation increases towards the equator. Trough detection frequencies are climatologically high downstream of the Rocky Mountains and over East Asia and Eastern Europe, but are remarkably low downstream of Greenland. Furthermore, the detection frequencies of troughs are high at the end of the Pacific storm track, but no comparable signal is seen over the North Atlantic. During El Niño-affected winters, troughs and ridges tilt anomalously strong cyclonically over North America and the North Atlantic, in agreement with previous findings based on traditional variance-based diagnostics such as E vectors. During La Niña the situation is essentially reversed. Finally, the identified troughs and ridges are used as starting points for 24-hour backward parcel trajectories, and a discussion of the distribution of pressure, potential temperature and potential vorticity changes along the flow path is provided to give insight into the three-dimensional nature of troughs and ridges.


2020 ◽  
Vol 1 (2) ◽  
pp. 459-479
Author(s):  
Sebastian Schemm ◽  
Stefan Rüdisühli ◽  
Michael Sprenger

Abstract. A novel method is introduced to identify and track the life cycle of upper-level troughs and ridges. The aim is to close the existing gap between methods that detect the initiation phase of upper-level Rossby wave development and methods that detect Rossby wave breaking and decaying waves. The presented method quantifies the horizontal trough and ridge orientation and identifies the corresponding trough and ridge axes. These allow us to study the dynamics of pre- and post-trough–ridge regions separately. The method is based on the curvature of the geopotential height at a given isobaric surface and is computationally efficient. Spatiotemporal tracking allows us to quantify the maturity of troughs and ridges and could also be used to study the temporal evolution of the trough or ridge orientation. First, the algorithm is introduced in detail, and several illustrative applications – such as a downstream development from the North Atlantic into the Mediterranean – and seasonal climatologies are discussed. For example, the climatological trough and ridge orientations reveal strong zonal and meridional asymmetry: over land, most troughs and ridges are anticyclonically oriented, while they are cyclonically oriented over the main oceanic storm tracks; the cyclonic orientation increases toward the poles, while the anticyclonic orientation increases toward the Equator. Trough detection frequencies are climatologically high downstream of the Rocky Mountains and over East Asia and eastern Europe but are remarkably low downstream of Greenland. Furthermore, the detection frequencies of troughs are high at the end of the North Pacific storm track and at the end of the North Atlantic storm track over the British Isles. During El Niño-affected winters, troughs and ridges exhibit an anomalously strong cyclonic tilt over North America and the North Atlantic, in agreement with previous findings based on traditional variance-based diagnostics such as E vectors. During La Niña, the situation is essentially reversed. The orientation of troughs and ridges also depends on the jet position. For example, during midwinter over the Pacific, when the subtropical jet is strongest and located farthest equatorward, cyclonically oriented troughs and ridges dominate the climatology. Finally, the identified troughs and ridges are used as starting points for 24 h backward parcel trajectories, and a discussion of the distribution of pressure, potential temperature and potential vorticity changes along the trajectories is provided to give insight into the three-dimensional nature of troughs and ridges.


2007 ◽  
Vol 20 (12) ◽  
pp. 2721-2744 ◽  
Author(s):  
Peter G. Baines ◽  
Chris K. Folland

Abstract It is shown that a number of important characteristics of the global atmospheric circulation and climate changed in a near-monotonic fashion over the decade, or less, centered on the late 1960s. These changes were largest or commonest in tropical regions, the Southern Hemisphere, and the Atlantic sector of the Northern Hemisphere. Some, such as the decrease in rainfall in the African Sahel, are well known. Others appear to be new, but their combined extent is global and dynamical linkages between them are evident. The list of affected variables includes patterns of SST; tropical rainfall in the African Sahel and Sudan, the Amazon basin, and northeast Brazil; pressure and SST in the tropical North Atlantic and the west and central Pacific; various branches of the southern Hadley circulation and the southern subtropical jet stream; the summer North Atlantic Oscillation; south Greenland temperature; the Southern Hemisphere storm track; and, quite likely, the Antarctic sea ice boundary. These changes are often strongest in the June–August season; changes are also seen in December–February but are generally smaller. In Greenland, annual mean temperature seems to be affected strongly, reflecting similar changes in SST throughout the year in the higher latitudes of the North Atlantic. Possible causes for these coordinated changes are briefly evaluated. The most likely candidates appear to be a likely reduction in the northward oceanic heat flux associated with the North Atlantic thermohaline circulation in the 1950s to 1970s, which was nearly in phase with a rapid increase in anthropogenic aerosol emissions during the 1950s and 1960s, particularly over Europe and North America.


2017 ◽  
Vol 47 (6) ◽  
pp. 1281-1289 ◽  
Author(s):  
A. M. Treguier ◽  
C. Lique ◽  
J. Deshayes ◽  
J. M. Molines

AbstractCorrelations between temperature and velocity fluctuations are a significant contribution to the North Atlantic meridional heat transport, especially at the northern boundary of the subtropical gyre. In satellite observations and in a numerical model at ⅞° resolution, a localized pattern of positive eddy heat flux is found northwest of the Gulf Stream, downstream of its separation at Cape Hatteras. It is confined to the upper 500 m. A simple kinematic model of a meandering jet can explain the surface eddy flux, taking into account a spatial shift between the maximum velocity of the jet and the maximum cross-jet temperature gradient. In the Gulf Stream such a spatial shift results from the nonlinear temperature profile and the vertical tilting of the velocity profile with depth. The numerical model suggests that the meandering of the Gulf Stream could account, at least in part, for the large eddy heat transport (of order 0.3 PW) near 36°N in the North Atlantic and for its compensation by the mean flow.


2012 ◽  
Vol 69 (12) ◽  
pp. 3763-3787 ◽  
Author(s):  
Dehai Luo ◽  
Jing Cha

Abstract In this paper, precursors to the North Atlantic Oscillation (NAO) and its transitions are investigated to understand the dynamical cause of the interdecadal NAO variability from dominant negative (NAO−) events during 1950–77 (P1) to dominant positive (NAO+) events during 1978–2010 (P2). It is found that the phase of the NAO event depends strongly on the latitudinal position of the North Atlantic jet (NAJ) prior to the NAO onset. The NAO− (NAO+) events occur frequently when the NAJ core prior to the NAO onset is displaced southward (northward), as the situation within P1 (P2). Thus, the northward (southward) shift of the NAJ from its mean position is a precursor to the NAO+ (NAO−) event. This finding is further supported by results obtained from a weakly nonlinear model. Furthermore, the model results show that, when the Atlantic mean zonal wind exceeds a critical strength under which the dipole anomaly prior to the NAO onset is stationary, in situ NAO− (NAO+) events, which are events not preceded by opposite events, can occur frequently during P1 (P2) when the Atlantic storm track is not too strong. This mean zonal wind condition is easily satisfied during P1 and P2. However, when the Atlantic storm track (mean zonal wind) prior to the NAO onset is markedly intensified (weakened), the NAO event can undergo a transition from one phase to another, especially in a relatively strong background westerly wind, the Atlantic storm track has to be strong enough to produce a phase transition.


Sign in / Sign up

Export Citation Format

Share Document