scholarly journals Northern hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception

2007 ◽  
Vol 3 (2) ◽  
pp. 181-192 ◽  
Author(s):  
F. Kaspar ◽  
T. Spangehl ◽  
U. Cubasch

Abstract. Climate simulations of the Eemian interglacial and the last glacial inception have been performed by forcing a coupled ocean-atmosphere general circulation model with insolation patterns of these periods. The parameters of the Earth's orbit have been set to conditions of 125 000 and 115 000 years before present (yr BP). Compared to today, these dates represent periods with enhanced and weakened seasonality of insolation in the northern hemisphere. Here we analyse the simulated change in northern hemisphere winter storm tracks. The change in the orbital configuration has a strong impact on the meridional temperature gradients and therefore on strength and location of the storm tracks. The North Atlantic storm track is strengthened, shifted northward and extends further to the east in the simulation for the Eemian at 125 kyr BP. As one consequence, the northern parts of Europe experience an increase in winter precipitation. The frequency of winter storm days increases over large parts of the North Atlantic including the British Isles and the coastal zones of north-western Europe. Opposite but weaker changes in storm track activity are simulated for 115 kyr BP.

2006 ◽  
Vol 2 (6) ◽  
pp. 1249-1276
Author(s):  
F. Kaspar ◽  
T. Spangehl ◽  
U. Cubasch

Abstract. Climate simulations of the Eemian interglacial and the last glacial inception have been performed by forcing a coupled ocean-atmosphere general circulation model with insolation patterns of these periods. The parameters of the Earth's orbit have been set to conditions of 125 000 and 115 000 years before present (yr BP). Compared to today, these dates represent periods with enhanced and weakened seasonality of insolation on the northern hemisphere. Here we analyze the simulated change in winter storm tracks. The change in the orbital configuration has a strong impact on the meridional temperature gradients and therefore on strength and location of the storm tracks. The North Atlantic storm track is strenghtened, shifted northward and extends further to the east in the simulation for the Eemian at 125 kyr BP. As one consequence, the northern parts of Europe experience an increase in winter precipitation. The frequency of winter storm days increases over large parts of the North Atlantic. Opposite but weaker changes in storm track activity are simulated for 115 kyr BP.


2009 ◽  
Vol 66 (9) ◽  
pp. 2539-2558 ◽  
Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.


2004 ◽  
Vol 4 (5) ◽  
pp. 6127-6148 ◽  
Author(s):  
K. Walter ◽  
H.-F. Graf

Abstract. There is ample evidence that the state of the northern polar stratospheric vortex in boreal winter influences tropospheric variability. Therefore, the main teleconnection patterns over the North Atlantic are defined separately for winter episodes in which the zonal mean wind at 50 hPa and 65° N is above or below the critical Rossby velocity for zonal planetary wave one. It turns out that the teleconnection structure in the middle and upper troposphere differs considerably between the two regimes of the polar vortex, while this is not the case at sea level. If the "polar vortex is strong", there exists "one" meridional dipole structure of geopotential height in the upper and middle troposphere, which is situated in the central North Atlantic. If the "polar vortex is weak", there exist "two" such dipoles, one over the western and one over the eastern North Atlantic. Storm tracks (and precipitation related with these) are determined by mid and upper tropospheric conditions and we find significant differences of these parameters between the stratospheric regimes. For the strong polar vortex regime, in case of a negative upper tropospheric "NAO" index we find a blocking height situation over the Northeast Atlantic and the strongest storm track of all. It is reaching far north into the Arctic Ocean and has a secondary maximum over the Denmark Strait. Such storm track is not found in composites based on a classic NAO defined by surface pressure differences between the Icelandic Low and the Azores High. Our results show that it is essential to include the state of the upper dynamic boundary conditions (the polar vortex strength) in any study of the variability over the North Atlantic. Climate forecast based solely on the forecast of a "classic NAO" and further statistical downscaling may lead to the wrong conclusions if the state of the polar vortex is not considered as well.


2005 ◽  
Vol 5 (1) ◽  
pp. 239-248 ◽  
Author(s):  
K. Walter ◽  
H.-F. Graf

Abstract. Motivated by the strong evidence that the state of the northern hemisphere vortex in boreal winter influences tropospheric variability, teleconnection patterns over the North Atlantic are defined separately for winter episodes where the zonal wind at 50hPa and 65° N is above or below the critical velocity for vertical propagation of zonal planetary wave 1. We argue that the teleconnection structure in the middle and upper troposphere differs considerably between the two regimes of the polar vortex, while this is not the case at sea level. If the polar vortex is strong, there exists one meridional dipole structure of geopotential height in the upper and middle troposphere, which is situated in the central North Atlantic. If the polar vortex is weak, there exist two such dipoles, one over the western and one over the eastern North Atlantic. Storm tracks (and precipitation related with these) are determined by mid and upper tropospheric conditions and we find significant differences of these parameters between the stratospheric regimes. For the strong polar vortex regime, in case of a negative upper tropospheric "NAO" index we find a blocking height situation over the Northeast Atlantic and the strongest storm track of all. It is reaching far north into the Arctic Ocean and has a secondary maximum over the Denmark Strait. Such storm track is not found in composites based on a classic NAO defined by surface pressure differences between the Icelandic Low and the Azores High. Our results suggest that it is important to include the state of the polar vortex strength in any study of the variability over the North Atlantic.


2017 ◽  
Vol 30 (10) ◽  
pp. 3705-3724 ◽  
Author(s):  
Jiabao Wang ◽  
Hye-Mi Kim ◽  
Edmund K. M. Chang

Abstract An interdecadal weakening in the North Atlantic storm track (NAST) and a poleward shift of the North Pacific storm track (NPST) are found during October–March for the period 1979–2015. A significant warming of surface air temperature (Ts) over northeastern North America and a La Niña–like change in the North Pacific under the background of Arctic amplification are found to be the contributors to the observed changes in the NAST and the NPST, respectively, via modulation of local baroclinicity. The interdecadal change in baroclinic energy conversion is consistent with changes in storm tracks with an energy loss from eddies to mean flow over the North Atlantic and an energy gain over the North Pacific. The analysis of simulations from the Community Earth System Model Large Ensemble project, although with some biases in storm-track and Ts simulations, supports the observed relationship between the NAST and Ts over northeastern North America, as well as the link between the NPST and El Niño–Southern Oscillation. The near-future projections of Ts and storm tracks are characterized by a warmer planet under the influence of increasing greenhouse gases and a significant weakening of both the NAST and the NPST. The potential role of the NAST in redistributing changes in Ts over the surrounding regions is also examined. The anomalous equatorward moisture flux associated with the weakening trend of the NAST would enhance the warming over its upstream region and hinder the warming over its downstream region via modulation of the downward infrared radiation.


2021 ◽  
Author(s):  
Johanna Knauf ◽  
Joakim Kjellsson ◽  
Annika Reintges

<p>We study the impact of ocean horizontal resolution on storm tracks over the North Atlantic Ocean using the FOCI-OpenIFS climate model and the TRACK storm-tracking algorithm. We find that increasing ocean resolution from 1/2° to 1/10° reduces a cold bias over the North Atlantic which leads to a northward shift of the storm tracks, in particular in winter and spring seasons.<span> </span></p><p>Most climate models with non-eddying oceans, i.e. horizontal resolutions of 100 km or higher, suffer from a cold SST bias in the North Atlantic. Refining the horizontal resolution from 1/2° to 1/10° allows for a distinct Gulf Stream extension and better representation of the major current systems which reduces this cold bias. The associated warming of the ocean surface with increasing resolution also warms the troposphere and leads to a northward shift in the tropospheric eddy-driven jet. Overall, the increased ocean resolution thus improves the ocean circulation as well as the atmospheric circulation.<span> </span></p><p>We use two metrics to evaluate the storm track activity in the simulations. We calculate 2-8 day bandpass-filtered mean sea-level pressure (MSLP) and eddy heat flux (v’T’) which is an Eulerian metric that shows variability of low- and high-pressure systems as well as their associated heat flux, but says nothing about the genesis, lysis or life time of individual storms. We also use the TRACK storm-tracking algorithm with 12-hourly MSLP data to produce trajectories of individual storms, which allows us to study individual storms.<span> </span></p><p>The Eulerian approach using MSLP variance and eddy heat fluxes clearly shows a northward shift of the storm tracks as the ocean resolution is increased. Overall, the northward shift leads to reduced biases compared to ERA-Interim reanalysis. Storm-track trajectories show higher storm track and storm genesis densities around 60°N with the higher ocean resolution. Interestingly, a higher ocean resolution also results in longer life time of storms. We speculate that this is due to enhanced air-sea interactions where cyclones are fed more energy from the eddy-resolving ocean than from the non-eddying ocean.</p>


2011 ◽  
Vol 24 (20) ◽  
pp. 5336-5352 ◽  
Author(s):  
Jennifer L. Catto ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges

Abstract Changes to the Northern Hemisphere winter (December–February) extratropical storm tracks and cyclones in a warming climate are investigated. Two idealized climate change experiments with the High Resolution Global Environmental Model version 1.1 (HiGEM1.1), a doubled CO2 and a quadrupled CO2 experiment, are compared against a present-day control run. An objective feature tracking method is used and a focus is given to regional changes. The climatology of extratropical storm tracks from the control run is shown to be in good agreement with the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), while the frequency distribution of cyclone intensity also compares well. In both simulations the mean climate changes are generally consistent with the simulations of the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) models, with strongly enhanced surface warming at the winter pole and reduced lower-tropospheric warming over the North Atlantic Ocean associated with the slowdown of the meridional overturning circulation. The circulation changes in the North Atlantic are different between the two idealized simulations with different CO2 forcings. In the North Atlantic the storm tracks are influenced by the slowdown of the MOC, the enhanced surface polar warming, and the enhanced upper tropical-troposphere warming, giving a northeastward shift of the storm tracks in the 2 × CO2 experiment but no shift in the 4 × CO2 experiment. Over the Pacific, in the 2 × CO2 experiment, changes in the mean climate are associated with local temperature changes, while in the 4 × CO2 experiment the changes in the Pacific are impacted by the weakened tropical circulation. The storm-track changes are consistent with the shifts in the zonal wind. Total cyclone numbers are found to decrease over the Northern Hemisphere with increasing CO2 forcing. Changes in cyclone intensity are found using 850-hPa vorticity, mean sea level pressure, and 850-hPa winds. The intensity of the Northern Hemisphere cyclones is found to decrease relative to the control.


2012 ◽  
Vol 69 (3) ◽  
pp. 840-856 ◽  
Author(s):  
Jérôme Saulière ◽  
David James Brayshaw ◽  
Brian Hoskins ◽  
Michael Blackburn

Abstract Building on previous studies of the basic ingredients of the North Atlantic storm track (examining land–sea contrast, orography, and SST), this article investigates the impact of Eurasian topography and Pacific SST anomalies on North Pacific and Atlantic storm tracks through a hierarchy of atmospheric GCM simulations using idealized boundary conditions in the Hadley Centre HadGAM1 atmospheric circulation model. The Himalaya–Tibet mountain complex is found to play a crucial role in shaping the North Pacific storm track. The northward deflection of the westerly flow around northern Tibet generates an extensive pool of very cold air in the northeastern tip of the Asian continent, which strengthens the meridional temperature gradient and favors baroclinic growth in the western Pacific. The Kuroshio SST front is also instrumental in strengthening the Pacific storm track through its impact on near-surface baroclinicity, while the warm waters around Indonesia tend to weaken it through the impact on baroclinicity of stationary Rossby waves propagating poleward from the convective heating regions. Three mechanisms by which the Atlantic storm track may be affected by changes in the boundary conditions upstream of the Rockies are discussed. In the model configuration used here, stationary Rossby waves emanating from Tibet appear to weaken the North Atlantic storm track substantially, whereas those generated over the cold waters off Peru appear to strengthen it. Changes in eddy-driven surface winds over the Pacific generally appear to modify the flow over the Rocky Mountains, leading to consistent modifications in the Atlantic storm track. The evidence for each of these mechanisms is, however, ultimately equivocal in these simulations.


Author(s):  
David James Brayshaw ◽  
Brian Hoskins ◽  
Emily Black

The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for interpreting past changes in Mediterranean climate and the civilizations it has supported over the last 12 000 years (broadly the Holocene period). This paper presents a discussion of how changes in climate forcing (e.g. orbital variations, greenhouse gases, ice sheet cover) may have impacted on the ‘basic ingredients’ controlling the mid-latitude storm tracks over the North Atlantic and the Mediterranean on intermillennial time scales. Idealized simulations using the HadAM3 atmospheric general circulation model (GCM) are used to explore the basic processes, while a series of timeslice simulations from a similar atmospheric GCM coupled to a thermodynamic slab ocean (HadSM3) are examined to identify the impact these drivers have on the storm track during the Holocene. The results suggest that the North Atlantic storm track has moved northward and strengthened with time since the Early to Mid-Holocene. In contrast, the Mediterranean storm track may have weakened over the same period. It is, however, emphasized that much remains still to be understood about the evolution of the North Atlantic and Mediterranean storm tracks during the Holocene period.


Sign in / Sign up

Export Citation Format

Share Document