Enhanced Northern Hemisphere Correlation Skill of Subseasonal Predictions in the Strong Negative Phase of the Arctic Oscillation

2020 ◽  
Vol 125 (10) ◽  
Author(s):  
Atsushi Minami ◽  
Yuhei Takaya
2020 ◽  
Author(s):  
Annalisa Cherchi ◽  
Paolo Oliveri ◽  
Aarnout van Delden

<p>The Arctic Oscillation (AO) is one of the main modes of variability of the Northern Hemisphere winter, also referred as Northern Annular Mode (NAM). The positive phase of the AO is characterized by warming/cooling over Northern Eurasia and the United States and cooling over Canada, especially over eastern Canada. Its positive phase is also characterized by very dry conditions over the Mediterranean and wet conditions over Northern Europe. A positive trend of the AO is observed for the period 1951-2011 and it is captured in CMIP5 models only when GHG-only forcing are included. In CMIP5 models the change expected is mostly mitigated by the effects of the aerosols. When considering AR5 scenarios, the AO is projected to become more positive in the future, though with a large spread among the models.</p><p>Overall the spread in the representation of the AO variability and trend is large also in experiments with present-day conditions, likely associated with the large internal variability. Unique tools to identify and measure the role of the internal variability in the model representation of the large-scale modes of variability are large ensembles where multiple members are built with different initial conditions.</p><p>Here we use the NCAR Community Model Large Ensemble (CESM-LE) composing the historical period (1920-2005) to the future (2006-2100) in a RCP8.5 scenario to measure the role of the internal variability in shaping AO variability and changes. Potential predictability of the AO index is quantified in the historical and future periods, evidencing how the members spread remain large without specific trends in these characteristics. Preliminary results indicate that the internal variability has large influence on the AO changes and related implications for the Northern Hemisphere climate.</p>


2017 ◽  
Vol 30 (8) ◽  
pp. 2905-2919 ◽  
Author(s):  
Jiankai Zhang ◽  
Fei Xie ◽  
Wenshou Tian ◽  
Yuanyuan Han ◽  
Kequan Zhang ◽  
...  

The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in the Northern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (0°–30°N) and there are three negative anomaly centers in the northern mid- and high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (~30 hPa; 70°–90°N), Arctic upper troposphere–lower stratosphere (UTLS; 150–300 hPa, 70°–90°N), and midlatitude UTLS (70–300 hPa, 30°–60°N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 0° and 30°N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arctic middle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the midlatitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the midlatitude UTLS are mainly due to enhanced eddy transport from the midlatitudes to the latitudes equatorward of 30°N, while the transport of ozone-poor air from the Arctic to the midlatitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by the AO.


2010 ◽  
Vol 37 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Michelle L'Heureux ◽  
Amy Butler ◽  
Bhaskar Jha ◽  
Arun Kumar ◽  
Wanqiu Wang

2021 ◽  
Vol 9 ◽  
Author(s):  
Yang Zhou ◽  
Yang Wang

The connections between the Madden–Julian Oscillation (MJO) and the Arctic Oscillation (AO) are examined in both observations and model forecasts. In the observations, the time-lag composites are carried out for AO indices and anomalies of 1,000-hPa geopotential height after an active or inactive initial MJO. The results show that when the AO is in its positive (negative) phase at the initial time, the AO activity is generally enhanced (weakened) after an active MJO. Reforecast data of the 11 operational global circulation models from the Sub-seasonal to Seasonal (S2S) Prediction Project are further used to examine the relationship between MJO activity and AO prediction. When the AO is in its positive phase on the initial day of the S2S prediction, an initial active MJO can generally improve the AO prediction skill in most of the models. This is consistent with results found in the observations that a leading MJO can enhance the AO activity. However, when the AO is in its negative phase, the relationship between the MJO and AO prediction is not consistent among the 11 models. Only a few S2S models provide results that agree with the observations. Furthermore, the S2S prediction skill of the AO is examined in different MJO phases. There is a significantly positive relationship between the MJO-related AO activity and the AO prediction skill. When the AO activity is strong (weak) in an MJO phase, including the inactive MJO, the models tend to have a high (low) AO prediction skill. For example, no matter what phase the initial AO is in, the AO prediction skill is generally high in MJO phase 7, in which the AO activity is generally strong. Thus, the MJO is an important predictability source for the AO forecast in the S2S models.


2014 ◽  
Vol 142 (10) ◽  
pp. 3528-3548 ◽  
Author(s):  
Matthew B. Souders ◽  
Brian A. Colle ◽  
Edmund K. M. Chang

Abstract This paper describes an objective, track-based climatology of Rossby wave packets (RWPs). NCEP–NCAR reanalysis wind and geopotential height data at 300 hPa every 6 h were spectrally filtered using a Hilbert transform technique under the assumption that RWPs propagate along a waveguide defined by the 14-day running average of the 300-hPa wind. Track data and feature-based descriptive statistics, including area, average intensity, intensity volume (intensity multiplied by area), intensity-weighted centroid position, and velocity, were gathered to describe the interannual, annual, seasonal, and regime-based climatology of RWPs. RWPs have a more pronounced seasonal cycle in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). RWPs are nearly nonexistent in the summer months (June–August; JJA) in the NH, while there is nearly continuous RWP activity downstream of South Africa during austral summer (December–February; DJF). Interannual variability in RWP frequency and intensity in the Northern Hemisphere is found to be strongly connected with the large-scale flow regimes such as El Niño–Southern Oscillation and the Arctic Oscillation. Enhanced RWP activity is also found to coherently propagate from the Pacific into the Atlantic on average when the Arctic Oscillation switches from a positive to a negative phase. No significant long-term (~30 yr) trend in RWP frequency, activity, or amplitude is found.


Sign in / Sign up

Export Citation Format

Share Document