scholarly journals An Improved ENSO Ensemble Forecasting Strategy Based on Multiple Coupled Model Initialization Parameters

2019 ◽  
Vol 11 (9) ◽  
pp. 2868-2878 ◽  
Author(s):  
Yanfeng Wang ◽  
Ping Huang ◽  
Lei Wang ◽  
Pengfei Wang ◽  
Ke Wei ◽  
...  
2005 ◽  
Vol 133 (2) ◽  
pp. 441-453 ◽  
Author(s):  
Jérôme Vialard ◽  
Frédéric Vitart ◽  
Magdalena A. Balmaseda ◽  
Timothy N. Stockdale ◽  
David L. T. Anderson

Abstract Seasonal forecasts are subject to various types of errors: amplification of errors in oceanic initial conditions, errors due to the unpredictable nature of the synoptic atmospheric variability, and coupled model error. Ensemble forecasting is usually used in an attempt to sample some or all of these various sources of error. How to build an ensemble forecasting system in the seasonal range remains a largely unexplored area. In this paper, various ensemble generation methodologies for the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting system are compared. A series of experiments using wind perturbations (applied when generating the oceanic initial conditions), sea surface temperature (SST) perturbations to those initial conditions, and random perturbation to the atmosphere during the forecast, individually and collectively, is presented and compared with the more usual lagged-average approach. SST perturbations are important during the first 2 months of the forecast to ensure a spread at least equal to the uncertainty level on the SST measure. From month 3 onward, all methods give a similar spread. This spread is significantly smaller than the rms error of the forecasts. There is also no clear link between the spread of the ensemble and the ensemble mean forecast error. These two facts suggest that factors not presently sampled in the ensemble, such as model error, act to limit the forecast skill. Methods that allow sampling of model error, such as multimodel ensembles, should be beneficial to seasonal forecasting.


2011 ◽  
Vol 8 (2) ◽  
pp. 3841-3881
Author(s):  
Y. Li ◽  
W. Kinzelbach ◽  
J. Zhou ◽  
G. D. Cheng ◽  
X. Li

Abstract. The hydrologic model HYDRUS-1D and the crop growth model WOFOST were coupled to efficiently manage water resources in agriculture and improve the prediction of crop production through the accurate estimation of actual transpiration with the root water uptake method and a soil moisture profile computed with the Richards equation during crop growth. The results of the coupled model are validated by experimental studies of irrigated-maize done in the middle reaches of northwest China's Heihe River, a semi-arid to arid region. Good agreement was achieved between the simulated evapotranspiration, soil moisture and crop production and their respective field measurements made under maize crop. However, for regions without detailed observation, the results of the numerical simulation could be unreliable for policy and decision making owing to the uncertainty of model boundary conditions and parameters. So, we developed the method of combining model simulation and ensemble forecasting to analyse and predict the probability of crop production. In our studies, the uncertainty analysis was used to reveal the risk of facing a loss of crop production as irrigation decreases. The global sensitivity analysis was used to test the coupled model and further quantitatively analyse the impact of the uncertainty of coupled model parameters and environmental scenarios on crop production. This method could be used for estimation in regions with no or reduced data availability.


2020 ◽  
Author(s):  
Luyu Sun

<p>The air-sea interface is one of the most physically active interfaces of the Earth's environments and significantly impacts the dynamics in both the atmosphere and ocean. In this study, we discuss the data assimilation of surface drifters, of which the dynamic motions are highly relevant to the instant change of both surface wind field and underlying ocean flow fields. We intend to take advantage of this relationship and improve the estimation of the model initialization in both ocean and coupled atmosphere-ocean systems.</p><p>The assimilation of position data from Lagrangian observing platforms is underdeveloped in operational applications because of two main challenges: 1) nonlinear growth of model and observation error in the Lagrangian trajectories, and 2) the high dimensionality of realistic models. In this study, we first propose an augemented-state Lagrangian data assimilation (LaDA) method that is based on the Local Ensemble Transform Kalman Filter (LETKF). The algorithm is tested with “identical twin” approach of Observing System Simulation Experiments (OSSEs) using the ocean model. Examinations on both of the eddy-permitting and the eddy-resolving Modular Ocean Model of the Geophysical Fluid Dynamics Laboratory (GFDL) are tested, which is intended to update the ocean states (T/S/U/V) at both the surface and at depth by directly assimilating the drifter locations. Results show that with a proper choice of localization radius, the LaDA can outperform conventional assimilation of surface in situ temperature and salinity measurements. The improvements are seen not only in the surface state estimate, but also throughout the ocean column to deep layer. The impacts of localization radius and model error in estimating accuracy of both fluid and drifter states are further investigated. In the second section, we investigate the LaDA within a Strongly Coupled Data Assimilation (SCDA) system using the simplified Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM), a three-layer truncated quasi-geostrophic model. Results show that assimilating the surface drifter locations directly is capable of improving not only the ocean states but also the atmosphere states as well. We then compare it to the conventional approach to assimilate the approximated velocities instead of the direct drifter locations and it shows that the assimilating drifter locations outperforms the other approach.</p>


1996 ◽  
Vol 48 (3) ◽  
pp. 465-476 ◽  
Author(s):  
Gerrit Lohmann ◽  
Rüdiger Gerdes ◽  
Deliang Chen

2013 ◽  
Vol 63 (1) ◽  
pp. 233-247 ◽  
Author(s):  
Z Sun ◽  
C Franklin ◽  
X Zhou ◽  
Y Ma ◽  
P Okely ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document