scholarly journals Potential of clumped isotopes in constraining the global atmospheric methane budget

Author(s):  
Edward Chung ◽  
Tim Arnold
2008 ◽  
Vol 4 (6) ◽  
pp. 681-684 ◽  
Author(s):  
Guangmin Cao ◽  
Xingliang Xu ◽  
Ruijun Long ◽  
Qilan Wang ◽  
Changting Wang ◽  
...  

For the first time to our knowledge, we report here methane emissions by plant communities in alpine ecosystems in the Qinghai–Tibet Plateau. This has been achieved through long-term field observations from June 2003 to July 2006 using a closed chamber technique. Strong methane emission at the rate of 26.2±1.2 and 7.8±1.1 μg CH 4 m −2  h −1 was observed for a grass community in a Kobresia humilis meadow and a Potentilla fruticosa meadow, respectively. A shrub community in the Potentilla meadow consumed atmospheric methane at the rate of 5.8±1.3 μg CH 4 m −2  h −1 on a regional basis; plants from alpine meadows contribute at least 0.13 Tg CH 4 yr −1 in the Tibetan Plateau. This finding has important implications with regard to the regional methane budget and species-level difference should be considered when assessing methane emissions by plants.


2020 ◽  
Vol 20 (21) ◽  
pp. 13011-13022
Author(s):  
Yuanhong Zhao ◽  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Xin Lin ◽  
Antoine Berchet ◽  
...  

Abstract. Decadal trends and interannual variations in the hydroxyl radical (OH), while poorly constrained at present, are critical for understanding the observed evolution of atmospheric methane (CH4). Through analyzing the OH fields simulated by the model ensemble of the Chemistry–Climate Model Initiative (CCMI), we find (1) the negative OH anomalies during the El Niño years mainly corresponding to the enhanced carbon monoxide (CO) emissions from biomass burning and (2) a positive OH trend during 1980–2010 dominated by the elevated primary production and the reduced loss of OH due to decreasing CO after 2000. Both two-box model inversions and variational 4D inversions suggest that ignoring the negative anomaly of OH during the El Niño years leads to a large overestimation of the increase in global CH4 emissions by up to 10 ± 3 Tg yr−1 to match the observed CH4 increase over these years. Not accounting for the increasing OH trends given by the CCMI models leads to an underestimation of the CH4 emission increase by 23 ± 9 Tg yr−1 from 1986 to 2010. The variational-inversion-estimated CH4 emissions show that the tropical regions contribute most to the uncertainties related to OH. This study highlights the significant impact of climate and chemical feedbacks related to OH on the top-down estimates of the global CH4 budget.


Author(s):  
James L. France ◽  
Rebecca E. Fisher ◽  
David Lowry ◽  
Grant Allen ◽  
Marcos F. Andrade ◽  
...  

The atmospheric methane (CH 4 ) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH 4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ 13 C CH 4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ 13 C CH 4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH 4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH 4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ 13 C CH 4 sources and hints at significant seasonal variation in tropical wetland δ 13 C CH 4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.


2021 ◽  
Author(s):  
Joel White ◽  
Lena Ström ◽  
Dag Ahrén ◽  
Janne Rinne ◽  
Veiko Lehsten

<p>Microbial communities of methane producing methanogens and consuming methanotrophs play an important role for the earths atmospheric methane budget. Despite their global significance, the functional potential of these communities is poorly understood. To investigate this, we applied the molecular technique, captured metagenomics, to identify the variability in functional diversity of microorganisms involved in the metabolism of methane<sub></sub>in an environmentally controlled laboratory study. Nine plant-peat mesocosms dominated by the sedge Eriophorum vaginatum, with varying coverage, were collected from a temperate natural wetland is Sweden and subjected to a simulated growing season. Samples for analysis of captured metagenomes were taken from the top, bottom and root adjacent zone at the end of the experiment. In addition, over the simulated season, measured gas fluxes of carbon dioxide (CO<sub>2</sub>) and CH<sub>4</sub>, δ<sup>13</sup>C of emitted CH<sub>4</sub> and the pore water concentration of dissolved methane and low molecular weight organic acids were recorded. The functional genes resulting from the captured metagenomes had a higher Shannon α-diversity in the root zone when compared to the bottom and top. Sequences coding for methane metabolism were significantly more diverse in the root and bottom zones when compared to the top. However, the frequency of Acetyl-CoA decarbonylase and methane monooxygenase subunit A were significantly higher in the high emitting methane flux category when compared to the medium and low emitting mesocosms. We conclude that captured metagenomic analyses of functional genes provides a good measure of the functional potential methanogenic and methanotrophic microbial communities. This technique can be used to investigate how methanogens and methanotrophs function in peatlands and thus, contribute to the concentration of atmospheric methane.</p>


2016 ◽  
Vol 16 (7) ◽  
pp. 4439-4449 ◽  
Author(s):  
L. M. T. Joelsson ◽  
J. A. Schmidt ◽  
E. J. K. Nilsson ◽  
T. Blunier ◽  
D. W. T. Griffith ◽  
...  

Abstract. Methane is the second most important long-lived greenhouse gas and plays a central role in the chemistry of the Earth's atmosphere. Nonetheless there are significant uncertainties in its source budget. Analysis of the isotopic composition of atmospheric methane, including the doubly substituted species 13CH3D, offers new insight into the methane budget as the sources and sinks have distinct isotopic signatures. The most important sink of atmospheric methane is oxidation by OH in the troposphere, which accounts for around 84 % of all methane removal. Here we present experimentally derived methane + OH kinetic isotope effects and their temperature dependence over the range of 278 to 313 K for CH3D and 13CH3D; the latter is reported here for the first time. We find kCH4/kCH3D = 1.31 ± 0.01 and kCH4/k13CH3D = 1.34 ± 0.03 at room temperature, implying that the methane + OH kinetic isotope effect is multiplicative such that (kCH4/k13CH4)(kCH4/kCH3D) = kCH4/k13CH3D, within the experimental uncertainty, given the literature value of kCH4/k13CH4 = 1.0039 ± 0.0002. In addition, the kinetic isotope effects were characterized using transition state theory with tunneling corrections. Good agreement between the experimental, quantum chemical, and available literature values was obtained. Based on the results we conclude that the OH reaction (the main sink of methane) at steady state can produce an atmospheric clumped isotope signal (Δ(13CH3D) = ln([CH4][13CH3D]/[13CH4][CH3D])) of 0.02 ± 0.02. This implies that the bulk tropospheric Δ(13CH3D) reflects the source signal with relatively small adjustment due to the sink signal (i.e., mainly OH oxidation).


2001 ◽  
Vol 106 (D17) ◽  
pp. 20465-20481 ◽  
Author(s):  
Maya Bräunlich ◽  
Olivier Aballain ◽  
Thomas Marik ◽  
Patrick Jöckel ◽  
Carl A. M. Brenninkmeijer ◽  
...  

2010 ◽  
Vol 6 (2) ◽  
pp. 131-144 ◽  
Author(s):  
P. C. Tzedakis

Abstract. Marine Isotope Stage (MIS) 11 has been considered a potential analogue for the Holocene and its future evolution. However, a dichotomy has emerged over the precise chronological alignment of the two intervals, with one solution favouring a synchronization of the precession signal and another of the obliquity signal. The two schemes lead to different implications over the natural length of the current interglacial and the underlying causes of the evolution of greenhouse gas concentrations. Here, the close coupling observed between changes in southern European tree populations and atmospheric methane concentrations in previous interglacials is used to evaluate the natural vs. anthropogenic contribution to Holocene methane emissions and assess the two alignment schemes. Comparison of the vegetation trends in MIS 1 and MIS 11 favours a precessional alignment, which would suggest that the Holocene is nearing the end of its natural course. This, combined with the divergence between methane concentrations and temperate tree populations after 5 kyr BP, provides some support for the notion that the Holocene methane trend may be anomalous compared to previous interglacials. In contrast, comparison of MIS 1 with MIS 19, which may represent a closer astronomical analogue than MIS 11, leads to substantially different conclusions on the projected natural duration of the current interglacial and the extent of the anthropogenic contribution to the Holocene methane budget. As answers vary with the choice of analogue, resolution of these issues using past interglacials remains elusive.


2013 ◽  
Vol 10 (11) ◽  
pp. 18687-18722 ◽  
Author(s):  
A. Maeck ◽  
H. Hofmann ◽  
A. Lorke

Abstract. Freshwater systems contribute significantly to the global atmospheric methane budget. A large fraction of the methane emitted from freshwaters is transported via ebullition. However, due to its strong variability in space and time, accurate measurements of ebullition rates are difficult; hence, the uncertainty of its contribution to global budgets is large. Here, we analyze measurements made by continuously recording automated bubble traps in an impounded river in central Europe and investigate the mechanisms affecting the temporal dynamics of bubble release from cohesive sediments. Our results show that the main mechanisms for bubble release were pressure changes, originating from the passage of ship-lock induced surges and ship-passages. The response to physical forcing was strongly affected by previous outgassing. Ebullition rates varied strongly over all relevant timescales from minutes to days; therefore, representative ebullition estimates could only be inferred with continuous sampling over long periods. Since ebullition was found to be episodic, short sampling intervals of a few days or weeks will likely underestimate ebullition rates, which may result in an uncertainty of over 50% in current global freshwater emission estimates.


2014 ◽  
Vol 14 (2) ◽  
pp. 3193-3230 ◽  
Author(s):  
A. Basu ◽  
M. G. Schultz ◽  
S. Schröder ◽  
L. Francois ◽  
X. Zhang ◽  
...  

Abstract. Atmospheric methane concentrations increased considerably from pre-industrial (PI) to present times largely due to anthropogenic emissions. However, firn and ice core records also document a notable rise of methane levels between the Last Glacial Maximum (LGM) and the pre-industrial era, the exact cause of which is not entirely clear. This study investigates these changes by analyzing the methane sources and sinks at each of these climatic periods. Wetlands are the largest natural source of methane and play a key role in determining methane budget changes in particular in the absence of anthropogenic sources. Here, a simple wetland parameterization suitable for coarse-scale climate simulations over long periods is introduced, which is derived from a high-resolution map of surface slopes together with various soil hydrology parameters from the CARAIB vegetation model. This parameterization was implemented in the chemistry general circulation model ECHAM5-MOZ and multi-year time slices were run for LGM, PI and present-day (PD) climate conditions. Global wetland emissions from our parameterization are 72 Tg yr−1 (LGM), 115 Tg yr−1 (PI), and 132 Tg yr−1 (PD). These estimates are lower than most previous studies, and we find a stronger increase of methane emissions between LGM and PI. Taking into account recent findings that suggest more stable OH concentrations than assumed in previous studies, the observed methane distributions are nevertheless well reproduced under the different climates. Hence, this is one of the first studies where a consistent model approach has been successfully applied for simulating methane concentrations over a wide range of climate conditions.


Sign in / Sign up

Export Citation Format

Share Document