methane source
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
pp. 1027-1048
Author(s):  
Gerard Wedderburn-Bisshop ◽  
Lauren Rickards

Human consumption of livestock remains a marginal issue in climate change debates, partly due to the IPCC's arbitrary adoption of 100-year global warming potential framework to compare different emissions, blinding us to the significance of shorter-term emissions, namely methane. Together with the gas it reacts to form - tropospheric ozone - methane has been responsible for 37% of global warming since 1750, yet its atmospheric life is just 10 years. Neglecting its role means overlooking powerful mitigation opportunities. The chapter discusses the role of livestock, the largest anthropogenic methane source, and the need to include reduced meat consumption in climate change responses. Looking beyond the conventional focus on the consumer, we point to some underlying challenges in addressing the meat-climate relationship, including the climate science community's reluctance to adopt a short-term focus in its climate projections. Policy options are presented.


Author(s):  
James L. France ◽  
Rebecca E. Fisher ◽  
David Lowry ◽  
Grant Allen ◽  
Marcos F. Andrade ◽  
...  

The atmospheric methane (CH 4 ) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH 4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ 13 C CH 4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ 13 C CH 4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH 4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH 4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ 13 C CH 4 sources and hints at significant seasonal variation in tropical wetland δ 13 C CH 4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.


Author(s):  
Vincent Gauci ◽  
Viviane Figueiredo ◽  
Nicola Gedney ◽  
Sunitha Rao Pangala ◽  
Tainá Stauffer ◽  
...  

Inundation-adapted trees were recently established as the dominant egress pathway for soil-produced methane (CH 4 ) in forested wetlands. This raises the possibility that CH 4 produced deep within the soil column can vent to the atmosphere via tree roots even when the water table (WT) is below the surface. If correct, this would challenge modelling efforts where inundation often defines the spatial extent of ecosystem CH 4 production and emission. Here, we examine CH 4 exchange on tree, soil and aquatic surfaces in forest experiencing a dynamic WT at three floodplain locations spanning the Amazon basin at four hydrologically distinct times from April 2017 to January 2018. Tree stem emissions were orders of magnitude larger than from soil or aquatic surface emissions and exhibited a strong relationship to WT depth below the surface (less than 0). We estimate that Amazon riparian floodplain margins with a WT < 0 contribute 2.2–3.6 Tg CH 4  yr −1 to the atmosphere in addition to inundated tree emissions of approximately 12.7–21.1 Tg CH 4  yr −1 . Applying our approach to all tropical wetland broad-leaf trees yields an estimated non-flooded floodplain tree flux of 6.4 Tg CH 4  yr −1 which, at 17% of the flooded tropical tree flux of approximately 37.1 Tg CH 4  yr −1 , demonstrates the importance of these ecosystems in extending the effective CH 4 emitting area beyond flooded lands. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Luana S. Basso ◽  
Luciano Marani ◽  
Luciana V. Gatti ◽  
John B. Miller ◽  
Manuel Gloor ◽  
...  

AbstractAtmospheric methane concentrations were nearly constant between 1999 and 2006, but have been rising since by an average of ~8 ppb per year. Increases in wetland emissions, the largest natural global methane source, may be partly responsible for this rise. The scarcity of in situ atmospheric methane observations in tropical regions may be one source of large disparities between top-down and bottom-up estimates. Here we present 590 lower-troposphere vertical profiles of methane concentration from four sites across Amazonia between 2010 and 2018. We find that Amazonia emits 46.2 ± 10.3 Tg of methane per year (~8% of global emissions) with no temporal trend. Based on carbon monoxide, 17% of the sources are from biomass burning with the remainder (83%) attributable mainly to wetlands. Northwest-central Amazon emissions are nearly aseasonal, consistent with weak precipitation seasonality, while southern emissions are strongly seasonal linked to soil water seasonality. We also find a distinct east-west contrast with large fluxes in the northeast, the cause of which is currently unclear.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1609
Author(s):  
Clifton P. Bueno de Mesquita ◽  
Jinglie Zhou ◽  
Susanna M. Theroux ◽  
Susannah G. Tringe

Anaerobic archaeal methanogens are key players in the global carbon cycle due to their role in the final stages of organic matter decomposition in anaerobic environments such as wetland sediments. Here we present the first draft metagenome-assembled genome (MAG) sequence of an unclassified Methanosarcinaceae methanogen phylogenetically placed adjacent to the Methanolobus and Methanomethylovorans genera that appears to be a distinct genus and species. The genome is derived from sediments of a hypersaline (97–148 ppt chloride) unrestored industrial saltern that has been observed to be a significant methane source. The source sediment is more saline than previous sources of Methanolobus and Methanomethylovorans. We propose a new genus name, Methanosalis, to house this genome, which we designate with the strain name SBSPR1A. The MAG was binned with CONCOCT and then improved via scaffold extension and reassembly. The genome contains pathways for methylotrophic methanogenesis from trimethylamine and dimethylamine, as well as genes for the synthesis and transport of compatible solutes. Some genes involved in acetoclastic and hydrogenotrophic methanogenesis are present, but those pathways appear incomplete in the genome. The MAG was more abundant in two former industrial salterns than in a nearby reference wetland and a restored wetland, both of which have much lower salinity levels, as well as significantly lower methane emissions than the salterns.


2021 ◽  
Vol 126 (17) ◽  
Author(s):  
T. Varga ◽  
R. E. Fisher ◽  
J. L. France ◽  
L. Haszpra ◽  
A. J. T. Jull ◽  
...  

2021 ◽  
Vol 14 (7) ◽  
pp. 5049-5069
Author(s):  
Sara M. Defratyka ◽  
Jean-Daniel Paris ◽  
Camille Yver-Kwok ◽  
Daniel Loeb ◽  
James France ◽  
...  

Abstract. Atmospheric ethane can be used as a tracer to distinguish methane sources, both at the local and global scale. Currently, ethane can be measured in the field using flasks or in situ analyzers. In our study, we characterized the CRDS Picarro G2201-i instrument, originally designed to measure isotopic CH4 and CO2, for measurements of ethane-to-methane ratio in mobile-measurement scenarios, near sources and under field conditions. We evaluated the limitations and potential of using the CRDS G2201-i to measure the ethane-to-methane ratio, thus extending the instrument application to simultaneously measure two methane source proxies in the field: carbon isotopic ratio and the ethane-to-methane ratio. First, laboratory tests were run to characterize the instrument in stationary conditions. Subsequently, the instrument performance was tested in field conditions as part of a controlled release experiment. Finally, the instrument was tested during mobile measurements focused on gas compressor stations. The results from the field were afterwards compared with the results obtained from instruments specifically designed for ethane measurements. Our study shows the potential of using the CRDS G2201-i instrument in a mobile configuration to determine the ethane-to-methane ratio in methane plumes under measurement conditions with an ethane uncertainty of 50 ppb. Assuming typical ethane-to-methane ratios ranging between 0 and 0.1 ppb ppb−1, we conclude that the instrument can accurately estimate the “true” ethane-to-methane ratio within 1σ uncertainty when CH4 enhancements are at least 1 ppm, as can be found in the vicinity of strongly emitting sites such as natural gas compressor stations and roadside gas pipeline leaks.


2021 ◽  
Vol 259 ◽  
pp. 112418
Author(s):  
Matthew R. Johnson ◽  
David R. Tyner ◽  
Alexander J. Szekeres

2021 ◽  
Author(s):  
Júlia B. Gontijo ◽  
Fabiana S. Paula ◽  
Andressa M. Venturini ◽  
Caio A. Yoshiura ◽  
Clovis D. Borges ◽  
...  

2021 ◽  
Author(s):  
xiaoqian li ◽  
Jianwei Xing ◽  
Shouji Pang ◽  
Youhai Zhu ◽  
Shuai Zhang ◽  
...  

Abstract Wetland methane emissions in the permafrost regions of the Qinghai-Tibet Plateau is more sensitive to climate warming and can result in a positive climate feedback. Natural gas hydrate, as a potential methane source, may play a pivotal role in wetland methane emission in the permafrost regions. However, it was lacking of evidence. To determine the role of gas hydrate release in wetland methane emission, the two-year field monitoring of methane emitted from a hydrate drilling well, in near-surface soil free gas and low-level air was conducted at a typical gas hydrate reservior in the Qilian Mountains permafrost. The carbon isotope fractionation between CO2 and CH4 (εC) associated with carbon isotopic composition of methane (δ13CCH4) is used as a good tracer to identify methane sources of thermogenic origin or of microbial origin. The monitoring results of the gas hydrate drilling well DK-8 indicated a notable release of the deep gas hydrates occurred in April- May and resulted in the increase of methane content in low-level air. The significance of gas hydrate release in the permafrost region on local wetland methane emission as well as low-level air methane was confirmed by the seasonal variation of methane source of near-surface soil fluxes and low-level air. The thermogenically derived methane were identified as the dominant methane source in autumn and winter compared with increasing contribution of microbially derived methane in summer. The carbon isotopic signatures of tracing methane sources can provide more reliable evidence for gas hydrate release and its effect on the wetland methane emission in the Qilian Mountains permafrost.


Sign in / Sign up

Export Citation Format

Share Document