scholarly journals Extreme mantle heterogeneity in mid‐ocean ridge mantle revealed in lavas from the 8°20' N near‐axis seamount chain

Author(s):  
Molly Anderson ◽  
V. Dorsey Wanless ◽  
Michael Perfit ◽  
Ethan Conrad ◽  
Patricia Gregg ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


1999 ◽  
Vol 36 (6) ◽  
pp. 1021-1031 ◽  
Author(s):  
Brian Cousens ◽  
Jarda Dostal ◽  
T S Hamilton

Three seamounts close to the south end of the Pratt-Welker Seamount Chain, Gulf of Alaska, have been sampled to test whether or not mantle plume-related volcanism extends south of Bowie Seamount. Lavas recovered from Oshawa, Drifters, and Graham seamounts are weathered, Mn-encrusted pillow lavas and sheet-flow fragments, commonly with glassy rims. The glasses and holocrystalline rocks are tholeiitic basalts, with light rare earth element depleted to flat primitive mantle normalized incompatible element patterns and radiogenic isotope compositions within the ranges of mid-ocean ridge and near-ridge seamount basalts from the Explorer and northern Juan de Fuca ridges. Chemically, the seamount lavas strongly resemble older, "shield-phase" tholeiitic rocks dredged from the flanks of southern Pratt-Welker seamounts, but are distinct from the younger alkaline intraplate lavas that cap Pratt-Welker edifices. The weathered, encrusted basalts were most likely erupted in a near-ridge environment, adjacent to Explorer Ridge, between 11 and 14 Ma. No evidence of plume-related activity is found in this area. Compared with northeast Pacific mid-ocean ridge and alkaline intraplate basalts, Graham seamount lavas have anomalously high 206Pb/204Pb, which does not appear to be a function of sea-floor alteration, magma contamination, or mixing between previously identified mantle components. All near-ridge seamounts in the northeast Pacific exhibit isotopic heterogeneity that does not correlate with major or trace element composition, suggesting that the mantle sources of all near-ridge seamounts have been variably depleted by prior, but recent melting events.


2017 ◽  
Vol 18 (4) ◽  
pp. 1419-1434 ◽  
Author(s):  
Jonguk Kim ◽  
Sang-Joon Pak ◽  
Jai-Woon Moon ◽  
Sang-Mook Lee ◽  
Jihye Oh ◽  
...  

2019 ◽  
Author(s):  
Yung Ping Lee ◽  
◽  
Jonathan E. Snow ◽  
Yongjun Gao
Keyword(s):  

2021 ◽  
Vol 566 ◽  
pp. 116951
Author(s):  
Suzanne K. Birner ◽  
Elizabeth Cottrell ◽  
Jessica M. Warren ◽  
Katherine A. Kelley ◽  
Fred A. Davis

Sign in / Sign up

Export Citation Format

Share Document