loki’s castle
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Florent Szitkar ◽  
Laurent Gernigon ◽  
Anna Lim ◽  
Marco Brönner

Abstract We use high-resolution and regional geophysical data to study a bathymetric high near the Mohns/Knipovich ridges junction, in the Norwegian-Greenland Sea. Near-seafloor magnetic data over hydrothermal site Loki’s Castle first support the basaltic nature of the seafloor. We then combine this result with regional magnetic and bathymetric considerations to investigate the crustal architecture in the vicinity of the junction. We show that the spreading asymmetry is insufficient to allow the development of Oceanic Core Complexes. Instead, this atypical off-axis hill is dominantly basaltic and should be interpreted as the first inside corner hogback structure identified along an active mid-ocean ridge system. Our conclusion tempers the definition of Oceanic Core Complex and underlines that bathymetric highs located off axis from slow-spreading centers cannot always be interpreted as such. This intermediate type of spreading paves the way to the introduction of a new class of oceanic structure referred to as Proto-Core Complexes.


2020 ◽  
Vol 539 ◽  
pp. 119495 ◽  
Author(s):  
Benjamin Eickmann ◽  
Tamara Baumberger ◽  
Ingunn H. Thorseth ◽  
Harald Strauss ◽  
Gretchen L. Früh-Green ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 694 ◽  
Author(s):  
Øystein Sture ◽  
Ben Snook ◽  
Martin Ludvigsen

Seafloor massive sulphide (SMS) deposits are hosts to a wide range of economic minerals, and may become an important resource in the future. The exploitation of these resources is associated with considerable expenses, and a return on investment may depend on the availability of multiple deposits. Therefore, efficient exploration methodologies for base metal deposits are important for future deep sea mining endeavours. Underwater hyperspectral imaging (UHI) has been demonstrated to be able to differentiate between different types of materials on the seafloor. The identification of possible end-members from field data requires prior information in the form of representative signatures for distinct materials. This work presents hyperspectral imaging applied to a selection of materials from the Loki’s Castle active hydrothermal vent site in a laboratory setting. A methodology for compensating for systematic effects and producing the reflectance spectra is detailed, and applied to recover the spectral signatures from the samples. The materials investigated were found to be distinguishable using unsupervised dimensionality reduction methods, and may be used as a reference for future field application.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 482 ◽  
Author(s):  
Przemyslaw Kowalczuk ◽  
Hassan Bouzahzah ◽  
Rolf Kleiv ◽  
Kurt Aasly

Simultaneous leaching of seafloor massive sulfides (SMS) from Loki’s Castle on the Arctic Mid-Ocean Ridge (AMOR) and polymetallic nodules (PN) from Clarion Clipperton Zone (CCZ) of the Central Pacific Ocean was studied. Leaching tests were conducted using sulfuric acid and sodium chloride, at a temperature of 80 °C for 48 h under reflux. The effect of PN-to-SMS ratio was examined. It was shown that simultaneous leaching of two different types of marine resources was possible resulting in high dissolution rates of metals. The proposed process has many advantages as it does not require pyrometallurgical pretreatment, and yields solid products (i.e., silica, barite, elemental sulfur, albite, microcline, muscovite), which might be utilized for various industrial applications.


2019 ◽  
Vol 69 (4) ◽  
pp. 975-981 ◽  
Author(s):  
Sven Le Moine Bauer ◽  
Andreas Gilje Sjøberg ◽  
Stéphane L'Haridon ◽  
Runar Stokke ◽  
Irene Roalkvam ◽  
...  

A bacterial strain, designated BAR1T, was isolated from a microbial mat growing on the surface of a barite chimney at the Loki’s Castle Vent Field, at a depth of 2216 m. Cells of strain BAR1T were rod-shaped, Gram-reaction-negative and grew on marine broth 2216 at 10–37 °C (optimum 27–35 °C), pH 5.5–8.0 (optimum pH 6.5–7.5) and 0.5–5.0 % NaCl (optimum 2 %). The DNA G+C content was 57.38 mol%. The membrane-associated major ubiquinone was Q-10, the fatty acid profile was dominated by C18 : 1ω7c (91 %), and the polar lipids detected were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid, one unidentified lipid and one unidentified phospholipid. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BAR1T clustered together with Rhodobacterales bacterium PRT1, as well as the genera Halocynthiibacter and Pseudohalocynthiibacter in a polyphyletic clade within the Roseobacter clade. Several characteristics differentiate strain BAR1T from the aforementioned genera, including its motility, its piezophilic behaviour and its ability to grow at 35 °C and under anaerobic conditions. Accordingly, strain BAR1T is considered to represent a novel genus and species within the Roseobacter clade, for which the name Profundibacter amoris gen. nov., sp. nov. is proposed. The type strain is Profundibacter amoris BAR1T (=JCM 31874T=DSM 104147T).


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Disa Bäckström ◽  
Natalya Yutin ◽  
Steffen L. Jørgensen ◽  
Jennah Dharamshi ◽  
Felix Homa ◽  
...  

ABSTRACT The nucleocytoplasmic large DNA viruses (NCLDV) of eukaryotes (proposed order, “Megavirales”) include the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, and Mimiviridae, as well as still unclassified pithoviruses, pandoraviruses, molliviruses, and faustoviruses. Several of these virus groups include giant viruses, with genome and particle sizes exceeding those of many bacterial and archaeal cells. We explored the diversity of the NCLDV in deep sea sediments from the Loki’s Castle hydrothermal vent area. Using metagenomics, we reconstructed 23 high-quality genomic bins of novel NCLDV, 15 of which are related to pithoviruses, 5 to marseilleviruses, 1 to iridoviruses, and 2 to klosneuviruses. Some of the identified pithovirus-like and marseillevirus-like genomes belong to deep branches in the phylogenetic tree of core NCLDV genes, substantially expanding the diversity and phylogenetic depth of the respective groups. The discovered viruses, including putative giant members of the family Marseilleviridae, have a broad range of apparent genome sizes, in agreement with the multiple, independent origins of gigantism in different branches of the NCLDV. Phylogenomic analysis reaffirms the monophyly of the pithovirus-iridovirus-marseillevirus branch of the NCLDV. Similarly to other giant viruses, the pithovirus-like viruses from Loki’s Castle encode translation systems components. Phylogenetic analysis of these genes indicates a greater bacterial contribution than had been detected previously. Genome comparison suggests extensive gene exchange between members of the pithovirus-like viruses and Mimiviridae. Further exploration of the genomic diversity of Megavirales in additional sediment samples is expected to yield new insights into the evolution of giant viruses and the composition of the ocean megavirome. IMPORTANCE Genomics and evolution of giant viruses are two of the most vigorously developing areas of virus research. Lately, metagenomics has become the main source of new virus genomes. Here we describe a metagenomic analysis of the genomes of large and giant viruses from deep sea sediments. The assembled new virus genomes substantially expand the known diversity of the nucleocytoplasmic large DNA viruses of eukaryotes. The results support the concept of independent evolution of giant viruses from smaller ancestors in different virus branches.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 576 ◽  
Author(s):  
Ben Snook ◽  
Kristian Drivenes ◽  
Gavyn Rollinson ◽  
Kurt Aasly

Loki’s Castle on the Arctic Mid-Ocean Ridge (AMOR) is an area of possible seafloor massive sulphide (SMS)-style mineralisation under Norwegian jurisdiction, which, due to mounting social pressure, may be a strategic future source of base and precious metals. The purpose of this study is to characterise mineralised material from a hydrothermal vent system on the AMOR in detail for the first time, and to discuss the suitability of methods used; reflected light microscopy, X-ray diffraction (XRD), whole rock geochemistry, electron probe micro-analysis (EPMA), and QEMSCAN. The primary sulphide phases, identifiable by microscopy, are pyrite and marcasite with minor pyrrhotite and galena, but multiple samples from the Loki’s Castle contain economically interesting quantities of copper (hosted in isocubanite and chalcopyrite) and zinc (hosted in sphalerite), as well as silver and gold. This reinforces the notion that slow spreading ridges may host significant base metal deposits. Micro-textures (chalcopyrite inclusions and exsolutions in sphalerite and isocubanite respectively) are typically undefinable by QEMSCAN, and require quantitative measurement by EPMA. QEMSCAN can be used to efficiently generate average grain size and mineral association data, as well as composition data, and is likely to be a powerful tool in assessing the effectiveness of SMS mineral processing.


2018 ◽  
Author(s):  
Disa Bäckström ◽  
Natalya Yutin ◽  
Steffen L. Jørgensen ◽  
Jennah Dharamshi ◽  
Felix Homa ◽  
...  

AbstractThe Nucleocytoplasmic Large DNA Viruses (NCLDV) of eukaryotes (proposed order ”Megavirales”) include the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, and Mimiviridae, as well as still unclassified Pithoviruses, Pandoraviruses, Molliviruses and Faustoviruses. Several of these virus groups include giant viruses, with genome and particle sizes exceeding those of many bacterial and archaeal cells. We explored the diversity of the NCLDV in deep-sea sediments from the Loki’s Castle hydrothermal vent area. Using metagenomics, we reconstructed 23 high quality genomic bins of novel NCLDV, 15 of which are closest related to Pithoviruses, 5 to Marseilleviruses, 1 to Iridoviruses, and 2 to Klosneuviruses. Some of the identified Pitho-like and Marseille-like genomes belong to deep branches in the phylogenetic tree of core NCLDV genes, substantially expanding the diversity and phylogenetic depth of the respective groups. The discovered viruses have a broad range of apparent genome sizes including putative giant members of the family Marseilleviridae, in agreement with multiple, independent origins of gigantism in different branches of the NCLDV. Phylogenomic analysis reaffirms the monophyly of the Pitho-Irido-Marseille branch of NCLDV. Similarly to other giant viruses, the Pitho-like viruses from Loki’s Castle encode translation systems components. Phylogenetic analysis of these genes indicates a greater bacterial contribution than detected previously. Genome comparison suggests extensive gene exchange between members of the Pitho-like viruses and Mimiviridae. Further exploration of the genomic diversity of “Megavirales” in additional sediment samples is expected to yield new insights into the evolution of giant viruses and the composition of the ocean megavirome.ImportanceGenomics and evolution of giant viruses is one of the most vigorously developing areas of virus research. Lately, metagenomics has become the main source of new virus genomes. Here we describe a metagenomic analysis of the genomes of large and giant viruses from deep sea sediments. The assembled new virus genomes substantially expand the known diveristy of the Nucleo-Cytoplasmic Large DNA Viruses of eukaryotes. The results support the concept of independent evolution of giant viruses from smaller ancestors in different virus branches.


2018 ◽  
Vol 48 (2) ◽  
pp. 927-937
Author(s):  
A. H. S. Tandberg ◽  
W. Vader ◽  
B. R. Olsen ◽  
H. T. Rapp

Sign in / Sign up

Export Citation Format

Share Document