scholarly journals Microphysics of Summer Precipitation Over Yangtze‐Huai River Valley region in China Revealed by GPM DPR Observation

2021 ◽  
Author(s):  
Xiong Hu ◽  
Weihua Ai ◽  
Junqi Qiao ◽  
ShenSen Hu ◽  
Ding Han ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3294
Author(s):  
Chentao He ◽  
Jiangfeng Wei ◽  
Yuanyuan Song ◽  
Jing-Jia Luo

The middle and lower reaches of the Yangtze River valley (YRV), which are among the most densely populated regions in China, are subject to frequent flooding. In this study, the predictor importance analysis model was used to sort and select predictors, and five methods (multiple linear regression (MLR), decision tree (DT), random forest (RF), backpropagation neural network (BPNN), and convolutional neural network (CNN)) were used to predict the interannual variation of summer precipitation over the middle and lower reaches of the YRV. Predictions from eight climate models were used for comparison. Of the five tested methods, RF demonstrated the best predictive skill. Starting the RF prediction in December, when its prediction skill was highest, the 70-year correlation coefficient from cross validation of average predictions was 0.473. Using the same five predictors in December 2019, the RF model successfully predicted the YRV wet anomaly in summer 2020, although it had weaker amplitude. It was found that the enhanced warm pool area in the Indian Ocean was the most important causal factor. The BPNN and CNN methods demonstrated the poorest performance. The RF, DT, and climate models all showed higher prediction skills when the predictions start in winter than in early spring, and the RF, DT, and MLR methods all showed better prediction skills than the numerical climate models. Lack of training data was a factor that limited the performance of the machine learning methods. Future studies should use deep learning methods to take full advantage of the potential of ocean, land, sea ice, and other factors for more accurate climate predictions.


2013 ◽  
Vol 726-731 ◽  
pp. 3401-3406 ◽  
Author(s):  
Man Zhang ◽  
Sheng Chen ◽  
You Cun Qi ◽  
Yi Yang

In this study, the biases and uncertainty of TRMM 3B42 estimates are investigated over the Huai-River Basin during the summer season in 2010. TRMM products of 3B42RT, 3B42V6 and 3B42V7 are cross-compared to Chinese Precipitation Analyses Products (CPAP) as the reference. It is found that the distribution of bias is closely depend on the terrain with the dry bias locates at hills/mountains and wet bias lies on the plains area. It is concluded that the bias may be caused by the defect of TRMM algorithm which cannot discern different types of precipitation. 3B42V7 product shows the best improvement in reducing both wet and dry bias; it also appears small uncertainty on summer season precipitation estimate.


2011 ◽  
Vol 24 (13) ◽  
pp. 3309-3322 ◽  
Author(s):  
Renhe Zhang ◽  
Zhiyan Zuo

Abstract Numerous studies have been conducted on the impact of soil moisture on the climate, but few studies have attempted to diagnose the linkage between soil moisture and climate variability using observational data. Here, using both observed and reanalysis data, the spring (April–May) soil moisture is found to have a significant impact on the summer (June–August) monsoon circulation over East Asia and precipitation in east China by changing surface thermal conditions. In particular, the spring soil moisture over a vast region from the lower and middle reaches of the Yangtze River valley to north China (the YRNC region) is significantly correlated to the summer precipitation in east China. When the YRNC region has a wetter soil in spring, northeast China and the lower and middle reaches of the Yangtze River valley would have abnormally higher precipitation in summer, while the region south of the Yangtze River valley would have abnormally lower precipitation. An analysis of the physical processes linking the spring soil moisture to the summer precipitation indicates that the soil moisture anomaly across the YRNC region has a major impact on the surface energy balance. Abnormally wet soil would increase surface evaporation and hence decrease surface air temperature (Ta). The reduced Ta in late spring would narrow the land–sea temperature difference, resulting in the weakened East Asian monsoon in an abnormally strengthened western Pacific subtropical high that is also located farther south than its normal position. This would then enhance precipitation in the Yangtze River valley. Conversely, the abnormally weakened East Asian summer monsoon allows the western Pacific subtropical high to wander to south of the Yangtze River Valley, resulting in an abnormally reduced precipitation in the southern part of the country in east China.


Sign in / Sign up

Export Citation Format

Share Document