trmm 3b42
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 4)

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3200
Author(s):  
Xi Jiang ◽  
Yanli Liu ◽  
Yongxiang Wu ◽  
Gaoxu Wang ◽  
Xuan Zhang ◽  
...  

The number of precipitation products at the global scale has increased rapidly, and the accuracy of these products directly affects the accuracy of hydro-meteorological simulation and forecast. Therefore, the applicability of these precipitation products should be comprehensively evaluated to improve their application in hydrometeorology. This paper evaluated the performances of six widely used precipitation products in southwest China by quantitative assessment and contingency assessment. The precipitation products were Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis 3B42 version 7 (TRMM 3B42 V7), Global Satellite Mapping of Precipitation (GSMaP MVK), Integrated Multi-satellitE Retrievals for GPM final run (GPM IMERG Final), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network—Climate Data Record (PERSIANN-CDR), Climate Hazards Infrared Precipitation with Stations version 2.0 (CHIRPS V2.0), and the Global Land Data Assimilation System version 2.0 (GLDAS V2.0). From the above six products, the daily-scale precipitation data from 2001 to 2019 were chosen to compare with the measured data of the rain gauge, and the data from the gauges were classified by river basin and elevation. All precipitation products and measured data were evaluated by statistical indicators. Results showed that (1) GPM IMERG Final and CHIRPS V2.0 performed well in the Yarlung Zangbo River (YZ) basin, while GPM IMERG Final and GLDAS V2.0 performed well in the Lantsang River (LS), Nujiang River (NJ), Yangtze River (YT), and Yellow River (YL) basins; (2) in the upper and middle reaches of the YZ basin, GPM IMERG Final and CHIRPS V2.0 were outstanding in all evaluated products; downstream of the YZ basin, all six products performed well; and upstream of the LS and NJ, GPM IMERG Final, TRMM 3B42 V7, CHIRPS V2.0, and GLDAS V2.0 can be recommended as a substitute for measured data; and (3) GPM IMERG Final and GLDAS V2.0 can be seen as substitutes for measured data when elevation is below 4000 m. GPM IMERG Final and CHIRPS V2.0 were recommended when elevation is above 4000 m. This study provides a reference for data selection of hydro-meteorological simulation and forecast in southwest China and also provides a basis for multi-source data assimilation and fusion.


2021 ◽  
Vol 1 (2) ◽  
pp. 904-916
Author(s):  
Naufal Achmad Arrokhman ◽  
◽  
Sri Wahyuni ◽  
Ery Suhartanto ◽  
◽  
...  
Keyword(s):  

Waduk Sutami merupakan waduk multiguna sehingga diperlukan pencatatan data curah hujan maupun data evaporasi yang lengkap sebagai dasar mengatur pola operasi waduk, analisis neraca air, dan lain-lain. Seiring perkembangan zaman, teknologi satelit dapat digunakan sebagai alternatif data hidrologi untuk mengantisipasi ketidaklengkapan dan ketidak-akuratan data saat pengukuran. Tujuan dari penelitian ini untuk melakukan evaluasi data satelit curah hujan dan evaporasi terhadap data pengukuran di Kawasan Waduk Sutami. Dari penelitian ini juga akan menghasilkan satelit yang direkomendasikan untuk dapat diterapkan pada lokasi studi. Dalam penelitian ini, penulis menggunakan data satelit curah hujan TRMM 3B42, CHIRPS, dan GPM V6. Sedangkan satelit evaporasi menggunakan GLDAS-2.1 dan CFS-V2. Masing-masing satelit tersebut mempunyai spesifikasi dan karakteristik yang berbeda-beda. Evaluasi data satelit dilakukan dengan menggunakan simulasi model kalibrasi dan validasi untuk mengetahui performa dari satelit tersebut. Hasil yang terbaik dapat diketahui dari nilai RMSE, NSE, Koefisien Korelasi, dan Kesalahan Relatif. Hasil penelitian menunjukkan bahwa pada intinya, seluruh satelit curah hujan (TRMM 3B42, CHIRPS, GPM V6) maupun satelit evaporasi (GLDAS-2.1, CFSV2) dapat digunakan sebagai alternatif data hidrologi di Kawasan Waduk Sutami. Hanya saja satelit curah hujan GPM V6 dan satelit evaporasi CFS-V2 memiliki tingkat keakurasian yang lebih tinggi dan performa yang lebih baik berdasarkan simulasi kalibrasi dan validasi.


2021 ◽  
Vol 13 (14) ◽  
pp. 7560
Author(s):  
Dinesh Singh Bhati ◽  
Swatantra Kumar Dubey ◽  
Devesh Sharma

Hydrological modeling is an important tool used for basin management and studying the impacts of extreme events in a river basin. In streamflow simulations, precipitation plays an essential role in hydrological models. Meteorological satellite precipitation measurement techniques provide highly accurate rainfall information with high spatial and temporal resolution. In this analysis, the tropical rainfall monitoring mission (TRMM) 3B42 V7 precipitation products were employed for simulating streamflow by using the soil water assessment tool (SWAT) model. With India Metrological Department and TRMM data, the SWAT model can be used to predict streamflow discharge and identify sensitive parameters for the Mahi basin. The SWAT model was calibrated for 2 years and then independently validated for 2 years by comparing observed and simulated streamflow. A strong correlation was observed between the calibration and validation results for the Paderdibadi station, with a Nash­–Sutcliffe efficiency of >0.34 and coefficient of determination (R2) of >0.77. The SWAT model was used to adequately simulate the streamflow for the Upper Mahi basin with a satisfactory R2 value. The analysis indicated that TRMM 3B42 V7 is useful in SWAT applications for predicting streamflow and performance and for sensitivity analysis. In addition, satellite data may require correction before its utilization in hydrological modeling. This study is helpful for stakeholders in monitoring and managing agricultural, climatic, and environmental changes.


2021 ◽  
Author(s):  
Myriam Benkirane ◽  
Nour-Eddine Laftouhi ◽  
Said Khabba ◽  
Bouabid El Mansouri

Abstract. The performance of Tropical Precipitation Measurement Mission (TRMM) and its successor, Global Precipitation Measurement (GPM), has provided hydrologists with a source of critical precipitation data for hydrological applications in basins where ground-based observations of precipitation are sparse, or spatially undistributed. The very high temporal and spatial resolution satellite precipitation products have therefore become a reliable alternative that researchers are increasingly using in various hydro-meteorological and hydro-climatological applications. This study aims to evaluate statistically and hydrologically the TRMM (3B42 V7) and GPM (IMERG V5) satellite precipitations products (SPPs), at multiple temporal scales from 2010 to 2017, in a mountainous watershed characterized by the Mediterranean climate. The results show that TRMM (3B42 V7) and GPM (IMERG V5) satellite precipitation products have a significant capacity for detecting precipitation at different time steps. However, the statistical analysis of SPPs against ground observation shows good results for both statistical metrics and contingency statistics with notable values (CC > 0.8), and representative values relatively close to 0 for the probability of detection (POD), critical success index (CSI), and false alarm ratio (FAR). Moreover, the sorting of the events implemented on the hydrological model was performed seasonally, at daily time steps. The calibrated episodes showed very good results with Nash values ranging from 53.2 % to 95.5 %. Nevertheless, the (IMERG V5) product detects more efficiently precipitation events at short time steps (daily), while (3B42 V7) has a strong ability to detect precipitation events at large time steps (monthly and yearly). Furthermore, the modeling results illustrate that both satellite precipitation products tend to underestimate precipitation during wet seasons and overestimate them during dry seasons, while they have a better spatial distribution of precipitation measurements performance, which shows the importance of their use for basin modeling and potentially for flood forecasting in Mediterranean catchment areas.


2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Saoussen Dhib ◽  
Nathaniel Chaney ◽  
Chris M. Mannaerts ◽  
Zoubeida Bargaoui

2021 ◽  
Vol 249 ◽  
pp. 105341
Author(s):  
Muhammad Arshad ◽  
Xieyao Ma ◽  
Jun Yin ◽  
Waheed Ullah ◽  
Gohar Ali ◽  
...  
Keyword(s):  

Author(s):  
Rachid Hadria ◽  
Adil Salhi ◽  
Tarik Benabdelouahab ◽  
Loubna Elmansouri ◽  
Hayat Lionboui ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document