The Relationship between the Interdecadal Variation of Summer Precipitation and Its Interannual Variability over the Middle and Lower Reaches of the Yangtze River Valley

2015 ◽  
Vol 8 (3) ◽  
pp. 127-133
Author(s):  
Fu Yuan-Hai
Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3294
Author(s):  
Chentao He ◽  
Jiangfeng Wei ◽  
Yuanyuan Song ◽  
Jing-Jia Luo

The middle and lower reaches of the Yangtze River valley (YRV), which are among the most densely populated regions in China, are subject to frequent flooding. In this study, the predictor importance analysis model was used to sort and select predictors, and five methods (multiple linear regression (MLR), decision tree (DT), random forest (RF), backpropagation neural network (BPNN), and convolutional neural network (CNN)) were used to predict the interannual variation of summer precipitation over the middle and lower reaches of the YRV. Predictions from eight climate models were used for comparison. Of the five tested methods, RF demonstrated the best predictive skill. Starting the RF prediction in December, when its prediction skill was highest, the 70-year correlation coefficient from cross validation of average predictions was 0.473. Using the same five predictors in December 2019, the RF model successfully predicted the YRV wet anomaly in summer 2020, although it had weaker amplitude. It was found that the enhanced warm pool area in the Indian Ocean was the most important causal factor. The BPNN and CNN methods demonstrated the poorest performance. The RF, DT, and climate models all showed higher prediction skills when the predictions start in winter than in early spring, and the RF, DT, and MLR methods all showed better prediction skills than the numerical climate models. Lack of training data was a factor that limited the performance of the machine learning methods. Future studies should use deep learning methods to take full advantage of the potential of ocean, land, sea ice, and other factors for more accurate climate predictions.


2011 ◽  
Vol 24 (13) ◽  
pp. 3309-3322 ◽  
Author(s):  
Renhe Zhang ◽  
Zhiyan Zuo

Abstract Numerous studies have been conducted on the impact of soil moisture on the climate, but few studies have attempted to diagnose the linkage between soil moisture and climate variability using observational data. Here, using both observed and reanalysis data, the spring (April–May) soil moisture is found to have a significant impact on the summer (June–August) monsoon circulation over East Asia and precipitation in east China by changing surface thermal conditions. In particular, the spring soil moisture over a vast region from the lower and middle reaches of the Yangtze River valley to north China (the YRNC region) is significantly correlated to the summer precipitation in east China. When the YRNC region has a wetter soil in spring, northeast China and the lower and middle reaches of the Yangtze River valley would have abnormally higher precipitation in summer, while the region south of the Yangtze River valley would have abnormally lower precipitation. An analysis of the physical processes linking the spring soil moisture to the summer precipitation indicates that the soil moisture anomaly across the YRNC region has a major impact on the surface energy balance. Abnormally wet soil would increase surface evaporation and hence decrease surface air temperature (Ta). The reduced Ta in late spring would narrow the land–sea temperature difference, resulting in the weakened East Asian monsoon in an abnormally strengthened western Pacific subtropical high that is also located farther south than its normal position. This would then enhance precipitation in the Yangtze River valley. Conversely, the abnormally weakened East Asian summer monsoon allows the western Pacific subtropical high to wander to south of the Yangtze River Valley, resulting in an abnormally reduced precipitation in the southern part of the country in east China.


2011 ◽  
Vol 24 (8) ◽  
pp. 2116-2133 ◽  
Author(s):  
Chenghai Wang ◽  
Xin-Zhong Liang ◽  
Arthur N. Samel

Abstract Analysis of 26 simulations from 11 general circulation models (GCMs) of the Atmospheric Model Intercomparison Project (AMIP) II reveals a basic inability to simultaneously predict the Yangtze River Valley (YRV) precipitation (PrYRV) annual cycle and summer interannual variability in response to observed global SST distributions. Only the Community Climate System Model (CCSM) and L’Institut Pierre-Simon Laplace (IPSL) models reproduce the observed annual cycle, but both fail to capture the interannual variability. Conversely, only Max Planck Institute (MPI) simulates interannual variability reasonably well, but its annual cycle leads observations by 2 months. The interannual variability of PrYRV reveals two distinct signals in observations, which are identified with opposite subtropical Pacific SST anomalies in the east (SSTe) and west (SSTw). First, negative SSTe anomalies are associated with equatorward displacement of the upper-level East Asian jet (ULJ) over China. The resulting transverse circulation enhances low-level southerly flow over the South China Sea and south China while convergent flow and upward motion increase over the YRV. Second, positive SSTw anomalies are linked with westward movement of the subtropical high over the west-central Pacific. This strengthens the low-level jet (LLJ) to the south of the YRV. These two signals act together to enhance PrYRV. The AMIP II suite, however, generally fails to reproduce these features. Only the MPI.3 realization is able to simulate both signals and, consequently, realistic PrYRV interannual variations. It appears that PrYRV is governed primarily by coherent ULJ and LLJ variations that act as the atmospheric bridges to remote SSTe and SSTw forcings, respectively. The PrYRV response to global SST anomalies may then be realistically depicted only when both bridges are correctly simulated. The above hypothesis does not exclude other signals that may play important roles linking PrYRV with remote SST forcings through certain atmospheric bridges, which deserve further investigation.


2017 ◽  
Vol 30 (22) ◽  
pp. 9183-9194 ◽  
Author(s):  
Li Liu ◽  
Renhe Zhang ◽  
Zhiyan Zuo

The relation of spring (March–May) to summer (July–August) precipitation in eastern China is examined using observed data. It is found that when spring precipitation from the lower and middle reaches of the Yangtze River valley to northern China (the YRNC region) is higher (lower), more (less) summer precipitation occurs in northeastern China and the lower and middle reaches of the Yangtze River valley, and less (more) in southeastern China. The analysis of physical mechanism showed that higher (lower) spring precipitation in the YRNC region is closely related to wet (dry) spring soil moisture, which decreases (increases) the surface temperature and sensible heat flux in late spring. Because the memory of spring soil moisture in the YRNC region reaches about 2.4 months, the surface thermal anomaly lasts into the subsequent summer, resulting in a weak (strong) East Asian summer monsoon. A weak East Asian summer monsoon corresponds to an anomalous anticyclone and a cyclone over southeastern and northeastern China, respectively, in the lower troposphere. The anomalous anticyclone depresses the summer precipitation in southeastern China, and the anomalous cyclone promotes precipitation over northeastern China. The abnormal northerly and southerly winds associated with the anomalous cyclone and anticyclone, respectively, converge in the lower and middle reaches of the Yangtze River valley, inducing more summer precipitation there.


Author(s):  
Young Min Yang ◽  
Bin Wang ◽  
Juan Li

It has been an outstanding challenge for global climate models to simulate and predict East Asia (EA) summer monsoon (EASM) rainfall. This study evaluates the dynamical hindcast skills with the newly developed Nanjing University of Information Science and Technology Earth System Model version 3.0 (NESM3.0). To improve the poor prediction of an earlier version of NESM3.0, we have modified convective parameterization schemes to suppress excessive deep convection and enhance insufficient shallow and stratiform clouds. The new version of NESM3.0 with modified parameterizations (MOD hereafter) yields significantly improved rainfall prediction in the northern and southern China but not over the Yangtze River Valley. The improved prediction is primarily attributed to the improvements in the predicted climatological summer mean rainfall and circulations, seasonal march of the subtropical rain belt, Nino 3.4 SST anomaly, and the rainfall anomalies associated with the development and decay of El Nino events. However, the MOD still has notable biases in the predicted leading mode of interannual variability of precipitation. The leading mode captures the dry (wet) anomalies over the South China Sea (northern EA) but misplaced precipitation anomalies over the Yangtze River Valley. The model can capture the interannual variation of the circulation indices very well, but the bias in the circulation-rainfall connection caused predicted rainfall errors. The results here suggest that over EA land regions, the skillful rainfall prediction relies on not only model’s capability in predicting better summer mean and seasonal march of rainfall and ENSO teleconnection with EASM, but also accurate prediction of the leading modes of interannual variability.


Sign in / Sign up

Export Citation Format

Share Document