scholarly journals Will anthropogenic warming increase Evapotranspiration? Examining Irrigation Water Demand Implications of Climate Change in California,

2021 ◽  
Author(s):  
P. Vahmani ◽  
A. D. Jones ◽  
D. Li
2020 ◽  
Vol 117 (47) ◽  
pp. 29526-29534
Author(s):  
Lorenzo Rosa ◽  
Davide Danilo Chiarelli ◽  
Matteo Sangiorgio ◽  
Areidy Aracely Beltran-Peña ◽  
Maria Cristina Rulli ◽  
...  

Climate change is expected to affect crop production worldwide, particularly in rain-fed agricultural regions. It is still unknown how irrigation water needs will change in a warmer planet and where freshwater will be locally available to expand irrigation without depleting freshwater resources. Here, we identify the rain-fed cropping systems that hold the greatest potential for investment in irrigation expansion because water will likely be available to suffice irrigation water demand. Using projections of renewable water availability and irrigation water demand under warming scenarios, we identify target regions where irrigation expansion may sustain crop production under climate change. Our results also show that global rain-fed croplands hold significant potential for sustainable irrigation expansion and that different irrigation strategies have different irrigation expansion potentials. Under a 3 °C warming, we find that a soft-path irrigation expansion with small monthly water storage and deficit irrigation has the potential to expand irrigated land by 70 million hectares and feed 300 million more people globally. We also find that a hard-path irrigation expansion with large annual water storage can sustainably expand irrigation up to 350 million hectares, while producing food for 1.4 billion more people globally. By identifying where irrigation can be expanded under a warmer climate, this work may serve as a starting point for investigating socioeconomic factors of irrigation expansion and may guide future research and resources toward those agricultural communities and water management institutions that will most need to adapt to climate change.


2020 ◽  
Author(s):  
Sujong Lee ◽  
Halim Lee ◽  
Hyun-Woo Jo ◽  
Youngjin Ko ◽  
Chul-Hee Lim ◽  
...  

<p>In 2019, The Food and Agriculture Organization(FAO) announced that North Korea was a food shortage country and which is closely related to the agricultural drought frequency. These agricultural drought frequencies derived from global climate change are increasing and in terms of climate change, agricultural drought is not just a national problem, but a global scale issue. To respond to agricultural drought-related with food shortage, various studies and projects are conducted based on the remote sensing data and modeling such as hydrological model, crop model, but access to public data in North Korea is limited, and also objectivity is difficult to be guaranteed. In this study, the estimation of rice yield and irrigation water demand based on the RCP (Representative Concentration Pathway) climate change scenario was conducted using Environmental Policy Integrated Climate(EPIC) model which calculates various variables related to agriculture by using climatic data, Soil data and topographic data. For validating the parameter of the model, the study area was set to the Korean Peninsula and the parameter was set stepwise compared results of the model with South Korea national statistics. The results of rice yield and irrigation water demand in the Korean Peninsula was validated by using statistics of international organizations. The assessment of Rice Yield and Irrigation Water Demand Change based on the EPIC model is considered a method for complementing the field test and statistical limitations in North Korea. This study can be used as basic data for agricultural drought in North Korea and Based on the model results, it is necessary to concern food security.</p>


2019 ◽  
Vol 17 (3) ◽  
pp. 359-371
Author(s):  
Gun-Ho Cho ◽  
Mirza Junaid Ahmad ◽  
Seulgi Lee ◽  
Kyung-Sook Choi ◽  
Won-Ho Nam ◽  
...  

2013 ◽  
Vol 40 (17) ◽  
pp. 4626-4632 ◽  
Author(s):  
Yoshihide Wada ◽  
Dominik Wisser ◽  
Stephanie Eisner ◽  
Martina Flörke ◽  
Dieter Gerten ◽  
...  

2014 ◽  
Vol 5 (3) ◽  
pp. 472-485 ◽  
Author(s):  
U. Surendran ◽  
C. M. Sushanth ◽  
George Mammen ◽  
E. J. Joseph

Rise in temperature is one of the predicted impacts of climate change with significant implications on water resources management. An attempt has been made to calculate the water requirement of crops in different agro-ecological zones of Palakkad district in humid tropical Kerala using the CROPWAT 8.0 model. Sensitivity analysis was done for a simulated rise in temperature from 0.5 to 3.0 °C keeping other parameters the same. The analysis showed that the total crop water requirement of all the major crops, like coconut, paddy and banana, increased with rising temperature thereby increasing the simulated irrigation water demand. The gross water demand inclusive of irrigation, domestic and industries will be 1,496 Mm3. The simulated gross water demand for an increase in temperature of 0.5, 1.0, 2.0 and 3.0 °C will be 1,523, 1,791, 1,822 and 1,853 Mm3, respectively. The maximum utilizable water resource available in the district is only 1,579 Mm3 and better water management, focusing particularly on improving the irrigation efficiency, has to be adopted to cater for the demands of the user sectors under changing climate scenario. A wide spectrum of climate change scenarios is also discussed in the paper along with guidelines for the future management of water resources.


2014 ◽  
Vol 21 (2) ◽  
pp. 233-247 ◽  
Author(s):  
Xiao-jun Wang ◽  
Jian-yun Zhang ◽  
Mahtab Ali ◽  
Shamsuddin Shahid ◽  
Rui-min He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document