scholarly journals Potential for sustainable irrigation expansion in a 3 °C warmer climate

2020 ◽  
Vol 117 (47) ◽  
pp. 29526-29534
Author(s):  
Lorenzo Rosa ◽  
Davide Danilo Chiarelli ◽  
Matteo Sangiorgio ◽  
Areidy Aracely Beltran-Peña ◽  
Maria Cristina Rulli ◽  
...  

Climate change is expected to affect crop production worldwide, particularly in rain-fed agricultural regions. It is still unknown how irrigation water needs will change in a warmer planet and where freshwater will be locally available to expand irrigation without depleting freshwater resources. Here, we identify the rain-fed cropping systems that hold the greatest potential for investment in irrigation expansion because water will likely be available to suffice irrigation water demand. Using projections of renewable water availability and irrigation water demand under warming scenarios, we identify target regions where irrigation expansion may sustain crop production under climate change. Our results also show that global rain-fed croplands hold significant potential for sustainable irrigation expansion and that different irrigation strategies have different irrigation expansion potentials. Under a 3 °C warming, we find that a soft-path irrigation expansion with small monthly water storage and deficit irrigation has the potential to expand irrigated land by 70 million hectares and feed 300 million more people globally. We also find that a hard-path irrigation expansion with large annual water storage can sustainably expand irrigation up to 350 million hectares, while producing food for 1.4 billion more people globally. By identifying where irrigation can be expanded under a warmer climate, this work may serve as a starting point for investigating socioeconomic factors of irrigation expansion and may guide future research and resources toward those agricultural communities and water management institutions that will most need to adapt to climate change.

2020 ◽  
Author(s):  
Iman Haqiqi ◽  
Danielle S. Grogan ◽  
Thomas W. Hertel ◽  
Wolfram Schlenker

Abstract. Agricultural production and food prices are affected by hydroclimatic extremes. There has been a large literature measuring the impacts of individual extreme events (heat stress or water stress) on agricultural and human systems. Yet, we lack a comprehensive understanding of the significance and the magnitude of the impacts of compound extremes. Here, we combine a high-resolution weather product with fine-scale outputs of a hydrological model to construct functional indicators of compound hydroclimatic extremes for agriculture. Then, we measure the impacts of individual and compound extremes on crop yields focusing on the United States during the 1981–2015 period. Supported by statistical evidence, we confirm that wet heat is more damaging than dry heat for crops. We show that the average damage from heat stress has been up to four times more severe when combined with water stress; and the value of water experiences a four-fold increase on hot days. In a robust framework with only a few parameters of compound extremes, this paper also improves our understanding of the conditional marginal value (or damage) of water in crop production. This value is critically important for irrigation water demand and farmer decision-making – particularly in the context of supplemental irrigation and sub-surface drainage.


2020 ◽  
Author(s):  
Sujong Lee ◽  
Halim Lee ◽  
Hyun-Woo Jo ◽  
Youngjin Ko ◽  
Chul-Hee Lim ◽  
...  

<p>In 2019, The Food and Agriculture Organization(FAO) announced that North Korea was a food shortage country and which is closely related to the agricultural drought frequency. These agricultural drought frequencies derived from global climate change are increasing and in terms of climate change, agricultural drought is not just a national problem, but a global scale issue. To respond to agricultural drought-related with food shortage, various studies and projects are conducted based on the remote sensing data and modeling such as hydrological model, crop model, but access to public data in North Korea is limited, and also objectivity is difficult to be guaranteed. In this study, the estimation of rice yield and irrigation water demand based on the RCP (Representative Concentration Pathway) climate change scenario was conducted using Environmental Policy Integrated Climate(EPIC) model which calculates various variables related to agriculture by using climatic data, Soil data and topographic data. For validating the parameter of the model, the study area was set to the Korean Peninsula and the parameter was set stepwise compared results of the model with South Korea national statistics. The results of rice yield and irrigation water demand in the Korean Peninsula was validated by using statistics of international organizations. The assessment of Rice Yield and Irrigation Water Demand Change based on the EPIC model is considered a method for complementing the field test and statistical limitations in North Korea. This study can be used as basic data for agricultural drought in North Korea and Based on the model results, it is necessary to concern food security.</p>


2019 ◽  
Vol 17 (3) ◽  
pp. 359-371
Author(s):  
Gun-Ho Cho ◽  
Mirza Junaid Ahmad ◽  
Seulgi Lee ◽  
Kyung-Sook Choi ◽  
Won-Ho Nam ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Jasmine Neupane ◽  
Wenxuan Guo

Agriculture faces the challenge of feeding a growing population with limited or depleting fresh water resources. Advances in irrigation systems and technologies allow site-specific application of irrigation water within the field to improve water use efficiency or reduce water usage for sustainable crop production, especially in arid and semi-arid regions. This paper discusses recent development of variable-rate irrigation (VRI) technologies, data and information for VRI application, and impacts of VRI, including profitability using this technology, with a focus on agronomic factors in precision water management. The development in sprinkler systems enabled irrigation application with greater precision at the scale of individual nozzle control. Further research is required to evaluate VRI prescription maps integrating different soil and crop characteristics in different environments. On-farm trials and whole-field studies are needed to provide support information for practical VRI applications. Future research also needs to address the adjustment of the spatial distribution of prescription zones in response to temporal variability in soil water status and crop growing conditions, which can be evaluated by incorporating remote and proximal sensing data. Comprehensive decision support tools are required to help the user decide where to apply how much irrigation water at different crop growth stages to optimize water use and crop production based on the regional climate conditions and cropping systems.


2013 ◽  
Vol 40 (17) ◽  
pp. 4626-4632 ◽  
Author(s):  
Yoshihide Wada ◽  
Dominik Wisser ◽  
Stephanie Eisner ◽  
Martina Flörke ◽  
Dieter Gerten ◽  
...  

2014 ◽  
Vol 5 (3) ◽  
pp. 472-485 ◽  
Author(s):  
U. Surendran ◽  
C. M. Sushanth ◽  
George Mammen ◽  
E. J. Joseph

Rise in temperature is one of the predicted impacts of climate change with significant implications on water resources management. An attempt has been made to calculate the water requirement of crops in different agro-ecological zones of Palakkad district in humid tropical Kerala using the CROPWAT 8.0 model. Sensitivity analysis was done for a simulated rise in temperature from 0.5 to 3.0 °C keeping other parameters the same. The analysis showed that the total crop water requirement of all the major crops, like coconut, paddy and banana, increased with rising temperature thereby increasing the simulated irrigation water demand. The gross water demand inclusive of irrigation, domestic and industries will be 1,496 Mm3. The simulated gross water demand for an increase in temperature of 0.5, 1.0, 2.0 and 3.0 °C will be 1,523, 1,791, 1,822 and 1,853 Mm3, respectively. The maximum utilizable water resource available in the district is only 1,579 Mm3 and better water management, focusing particularly on improving the irrigation efficiency, has to be adopted to cater for the demands of the user sectors under changing climate scenario. A wide spectrum of climate change scenarios is also discussed in the paper along with guidelines for the future management of water resources.


2014 ◽  
Vol 21 (2) ◽  
pp. 233-247 ◽  
Author(s):  
Xiao-jun Wang ◽  
Jian-yun Zhang ◽  
Mahtab Ali ◽  
Shamsuddin Shahid ◽  
Rui-min He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document