scholarly journals Lasers and Ultracold Atoms for a Changing Earth

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Michel Van Camp ◽  
F. dos Santos ◽  
Michael Murb�ck ◽  
G�rard Petit ◽  
J�rgen M�ller

Applying new technology rooted in quantum mechanics and relativity to terrestrial and space geodesy will sharpen our understanding of how the planet responds to natural and human-induced changes.

Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
E. Knapek ◽  
H. Formanek ◽  
G. Lefranc ◽  
I. Dietrich

A few years ago results on cryoprotection of L-valine were reported, where the values of the critical fluence De i.e, the electron exposure which decreases the intensity of the diffraction reflections by a factor e, amounted to the order of 2000 + 1000 e/nm2. In the meantime a discrepancy arose, since several groups published De values between 100 e/nm2 and 1200 e/nm2 /1 - 4/. This disagreement and particularly the wide spread of the results induced us to investigate more thoroughly the behaviour of organic crystals at very low temperatures during electron irradiation.For this purpose large L-valine crystals with homogenuous thickness were deposited on holey carbon films, thin carbon films or Au-coated holey carbon films. These specimens were cooled down to nearly liquid helium temperature in an electron microscope with a superconducting lens system and irradiated with 200 keU-electrons. The progress of radiation damage under different preparation conditions has been observed with series of electron diffraction patterns and direct images of extinction contours.


Sign in / Sign up

Export Citation Format

Share Document