Viscous effects on the particle size segregation in geophysical mass flows: Insights from immersed granular shear flow simulations

Author(s):  
Kahlil F.E. Cui ◽  
Gordon G.D. Zhou ◽  
Lu Jing
2010 ◽  
Vol 652 ◽  
pp. 105-137 ◽  
Author(s):  
J. M. N. T. GRAY ◽  
B. P. KOKELAAR

Particle size segregation can have a significant feedback on the motion of many hazardous geophysical mass flows such as debris flows, dense pyroclastic flows and snow avalanches. This paper develops a new depth-averaged theory for segregation that can easily be incorporated into the existing depth-averaged structure of typical models of geophysical mass flows. The theory is derived by depth-averaging the segregation-remixing equation for a bi-disperse mixture of large and small particles and assuming that (i) the avalanche is always inversely graded and (ii) there is a linear downslope velocity profile through the avalanche depth. Remarkably, the resulting ‘large particle transport equation’ is very closely related to the segregation equation from which it is derived. Large particles are preferentially transported towards the avalanche front and then accumulate there. This is important, because when this is combined with mobility feedback effects, the larger less mobile particles at the front can be continuously shouldered aside to spontaneously form lateral levees that channelize the flow and enhance run-out. The theory provides a general framework that will enable segregation-mobility feedback effects to be studied in detail for the first time. While the large particle transport equation has a very simple representation of the particle size distribution, it does a surprisingly good job of capturing solutions to the full theory once the grains have segregated into inversely graded layers. In particular, we show that provided the inversely graded interface does not break it has precisely the same solution as the full theory. When the interface does break, a concentration shock forms instead of a breaking size segregation wave, but the net transport of large particles towards the flow front is exactly the same. The theory can also model more complex effects in small-scale stratification experiments, where particles may either be brought to rest by basal deposition or by the upslope propagation of a granular bore. In the former case the resulting deposit is normally graded, while in the latter case it is inversely graded. These completely opposite gradings in the deposit arise from a parent flow that is inversely graded, which raises many questions about how to interpret geological deposits.


2020 ◽  
Vol 125 (10) ◽  
Author(s):  
Gordon G. D. Zhou ◽  
Kahlil F. E. Cui ◽  
Lu Jing ◽  
Tao Zhao ◽  
Dongri Song ◽  
...  

2008 ◽  
Vol 19 (1) ◽  
pp. 61-86 ◽  
Author(s):  
M. SHEARER ◽  
J. M. N. T. GRAY ◽  
A. R. THORNTON

Dense, dry granular avalanches are very efficient at sorting the larger particles towards the free surface of the flow, and finer grains towards the base, through the combined processes of kinetic sieving and squeeze expulsion. This generates an inversely graded particle-size distribution, which is fundamental to a variety of pattern formation mechanisms, as well as subtle size-mobility feedback effects, leading to the formation of coarse-grained lateral levees that create channels in geophysical flows, enhancing their run-out. In this paper we investigate some of the properties of a recent model [Gray, J. M. N. T. & Thornton, A. R. (2005) A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. 461, 1447–1473]; [Thornton, A. R., Gray, J. M. N. T. & Hogg, A. J. (2006) A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid. Mech. 550, 1–25] for the segregation of particles of two sizes but the same density in a shear flow typical of shallow avalanches. The model is a scalar conservation law in space and time, for the volume fraction of smaller particles, with non-constant coefficients depending on depth within the avalanche. It is proved that for steady flow from an inlet, complete segregation occurs beyond a certain finite distance down the slope, no matter what the mixture at the inlet. In time-dependent flow, dynamic shock waves can develop; they are interfaces separating different mixes of particles. Shock waves are shown to be stable if and only if there is a greater concentration of large particles above the interface than below. Constructions with shocks and rarefaction waves are demonstrated on a pair of physically relevant initial boundary value problems, in which a region of all small particles is penetrated from the inlet by either a uniform mixture of particles or by a layer of small particles over a layer of large particles. In both cases, and under a linear shear flow, solutions are constructed for all time and shown to have similar structure for all choices of parameters.


2012 ◽  
Vol 117 (F1) ◽  
pp. n/a-n/a ◽  
Author(s):  
C. G. Johnson ◽  
B. P. Kokelaar ◽  
R. M. Iverson ◽  
M. Logan ◽  
R. G. LaHusen ◽  
...  

2014 ◽  
Vol 264 ◽  
pp. 133-139 ◽  
Author(s):  
Patrick S.M. Dougherty ◽  
Martin C. Marinack ◽  
Cecily M. Sunday ◽  
C. Fred Higgs

2017 ◽  
Vol 96 (2) ◽  
Author(s):  
Eric P. Hoppmann ◽  
Brian C. Utter

2008 ◽  
Vol 48 (12) ◽  
pp. 1696-1703 ◽  
Author(s):  
Hiroshi Mio ◽  
Satoshi Komatsuki ◽  
Masatoshi Akashi ◽  
Atsuko Shimosaka ◽  
Yoshiyuki Shirakawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document