size segregation
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 60)

H-INDEX

45
(FIVE YEARS 4)

Author(s):  
Federica Bertolotti ◽  
Anna Vivani ◽  
Fabio Ferri ◽  
Pietro Anzini ◽  
Antonio Cervellino ◽  
...  

2021 ◽  
Vol 14 (12) ◽  
pp. 7657-7680
Author(s):  
Yangjunjie Xu-Yang ◽  
Rémi Losno ◽  
Fabrice Monna ◽  
Jean-Louis Rajot ◽  
Mohamed Labiadh ◽  
...  

Abstract. This paper presents a new sampling head design and the method used to evaluate it. The elemental composition of aerosols collected by two different sampling devices in a semi-arid region of Tunisia is compared by means of compositional perturbation vectors and biplots. This set of underused mathematical tools belongs to a family of statistics created specifically to deal with compositional data. The two sampling devices operate at a flow rate in the range of 1 m3 h−1, with a cut-off diameter of 10 µm. The first device is a low-cost laboratory-made system, where the largest particles are removed by gravitational settling in a vertical tube. This new system will be compared to the second device, a brand-new standard commercial PM10 sampling head, where size segregation is achieved by particle impaction on a metal surface. A total of 44 elements (including rare earth elements, REEs, together with Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sc, Se, Sr, Ti, Tl, U, V, Zn, and Zr) were analysed in 16 paired samples, collected during a 2-week field campaign in Tunisian dry lands, close to source areas, with high levels of large particles. The contrasting meteorological conditions encountered during the field campaign allowed a broad range of aerosol compositions to be collected, with very different aerosol mass concentrations. The compositional data analysis (CoDA) tools show that no compositional differences were observed between samples collected simultaneously by the two devices. The mass concentration of the particles collected was estimated through chemical analysis. Results for the two sampling devices were very similar to those obtained from an online aerosol weighing system, TEOM (tapered element oscillating microbalance), installed next to them. These results suggest that the commercial PM10 impactor head can therefore be replaced by the decanter, without any measurable bias, for the determination of chemical composition and for further assessment of PM10 concentrations in source regions.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7432
Author(s):  
Radu-Robert Piticescu ◽  
Anca Elena Slobozeanu ◽  
Sorina Nicoleta Valsan ◽  
Cristina Florentina Ciobota ◽  
Andreea-Nicoleta Ghita ◽  
...  

Zirconium dioxide (ZrO2) is one of the ceramic materials with high potential in many areas of modern technologies. ZrO2 doped with 8 wt.% (~4.5 mol%) Y2O3 is a commercial powder used for obtaining stabilized zirconia materials (8 wt.% YSZ) with high temperature resistance and good ionic conductivity. During recent years it was reported the co-doping with multiple rare earth elements has a significant influence on the thermal, mechanical and ionic conductivity of zirconia, due complex grain size segregation and enhanced oxygen vacancies mobility. Different methods have been proposed to synthesize these materials. Here, we present the hydrothermal synthesis of 8 wt.% (~4.5 mol%) YSZ co-doped with 4, 6 and 8 wt.% La2O3, Nd2O3, Sm2O3 and Gd2O3 respectively. The crystalline phases formed during their thermal treatment in a large temperature range were analyzed by X-ray diffraction. The evolution of phase composition vs. thermal treatment temperatures shows as a major trend the formation at temperatures >1000 °C of a cubic solid solutions enriched in the rare earth oxide used for co-doping as major phase. The first results on the thermal conductivities and impedance measurements on sintered pellets obtained from powders co-doped with 8 wt.% Y and 6% Ln (Ln = La, Nd, Sm and Gd) and the corresponding activation energies are presented and discussed. The lowest thermal conductivity was obtained for La co-doped 8 wt.% YSZ while the lowest activation energy for ionic conduction for Gd co-doped 8 wt.% YSZ materials.


2021 ◽  
Vol 242 ◽  
pp. 109957
Author(s):  
Youkou Dong ◽  
Chengli Liu ◽  
Houzhen Wei ◽  
Qingshan Meng ◽  
Haoran Zhou
Keyword(s):  

Author(s):  
Lauren A. Garofalo ◽  
Yicong He ◽  
Shantanu H. Jathar ◽  
Jeffrey R. Pierce ◽  
Carley D. Fredrickson ◽  
...  

Author(s):  
V. A. Kobelev ◽  
G. A. Nechkin ◽  
G. E. Isaenko ◽  
V. V. Kirsanov

By the previous studies it was established that the character of solid fuel distribution throughout the bed height considerably effects the sintering machines productivity and the sinter quality. The purpose of the study was assessment of solid fuel distribution in the agglomerated burden throughout the height of bed at sintering machine. Sinter mix samples were taken from three sections of the bed: 150 mm - top part, 150 mm - middle part and 170 mm - bottom part at the sintering machines of NLMK. After screening the samples, particle size distribution was determined, as well as carbon content throughout the bed height and in the particles of different sizes. It was found that all solid fuel, irrespective of the size, gets balled into sinter mix granules, fine fuel (fraction -0.63 mm) was almost evenly distributed over the granules of different sizes, while coarse fuel (+3 mm) is mainly picked up by large granules. Solid fuel of -3 mm +0.63 mm fraction is mostly balled into 3-5 mm granules. Such nature of solid fuel distribution in the granules of the pelletized mix results in suboptimal distribution of fuel throughout the bed height at sintering machines No. 1, 2, despite satisfactory size segregation of the mix: it changes from low content in the top part to a higher content at the bottom of the bed. At sintering machines No. 3, 4 where there was no size segregation of the mix, fuel distribution throughout the bed height changes from optimal to non-optimal (low content in the top part). To optimize solid fuel distribution throughout the bed height with both good and poor segregation of the mix, it is necessary to reduce the content of 0-0.5 mm particles fraction in coke breeze.


2021 ◽  
Vol 62 (10) ◽  
Author(s):  
Tomás Trewhela ◽  
Christophe Ancey

Abstract This paper shows how a conveyor belt setup can be used to study the dynamics of stationary granular flows. To visualise the flow within the granular bulk and, in particular, determine its composition and the velocity field, we used the refractive index matching (RIM) technique combined with particle tracking velocimetry and coarse-graining algorithms. Implementing RIM posed varied technical, design and construction difficulties. To test the experimental setup and go beyond a mere proof of concept, we carried out granular flow experiments involving monodisperse and bidisperse borosilicate glass beads. These flows resulted in stationary avalanches with distinct regions whose structures were classified as: (i) a convective-bulged front, (ii) a compact-layered tail and, between them, (iii) a breaking size-segregation wave structure. We found that the bulk strain rate, represented by its tensor invariants, varied significantly between the identified flow structures, and their values supported the observed avalanche characteristics. The flow velocity fields’ interpolated profiles adjusted well to a Bagnold-like profile, although a considerable basal velocity slip was measured. We calculated a segregation flux using recent developments in particle-size segregation theory. Along with vertical velocity changes and high expansion rates, segregation fluxes were markedly higher at the avalanche’s leading edge, suggesting a connection between flow rheology and grain segregation. The experimental conveyor belt’s results showed the potential for further theoretical developments in rheology and segregation-coupled models. Graphic Abstract


2021 ◽  
Vol 9 (4) ◽  
pp. 995-1011
Author(s):  
Odin Marc ◽  
Jens M. Turowski ◽  
Patrick Meunier

Abstract. The size of grains delivered to rivers by hillslope processes is thought to be a key factor controlling sediment transport, long-term erosion and the information recorded in sedimentary archives. Recently, models have been developed to estimate the grain size distribution produced in soil, but these models may not apply to active orogens where high erosion rates on hillslopes are driven by landsliding. To date, relatively few studies have focused on landslide grain size distributions. Here, we present grain size distributions (GSDs) obtained by grid-by-number sampling on 17 recent landslide deposits in Taiwan, and we compare these GSDs to the geometrical and physical properties of the landslides, such as their width, area, rock type, drop height and estimated scar depth. All slides occurred in slightly metamorphosed sedimentary units, except two, which occurred in younger unmetamorphosed shales, with a rock strength that is expected to be 3–10 times weaker than their metamorphosed counterparts. For 11 landslides, we did not observe substantial spatial variations in the GSD over the deposit. However, four landslides displayed a strong grain size segregation on their deposit, with the overall GSD of the downslope toe sectors being 3–10 times coarser than apex sectors. In three cases, we could also measure the GSD inside incised sectors of the landslides deposits, which presented percentiles that were 3–10 times finer than the surface of the deposit. Both observations could be due to either kinetic sieving or deposit reworking after the landslide failure, but we cannot explain why only some deposits had strong segregation. Averaging this spatial variability, we found the median grain size of the deposits to be strongly negatively correlated with drop height, scar width and depth. However, previous work suggests that regolith particles and bedrock blocks should coarsen with increasing depth, which is the inverse of our observations. Accounting for a model of regolith coarsening with depth, we found that the ratio of the estimated original bedrock block size to the deposit median grain size (D50) of the deposit was proportional to the potential energy of the landslide normalized to its bedrock strength. Thus, the studied landslides agree well with a published, simple fragmentation model, even if that model was calibrated on rock avalanches with larger volume and stronger bedrock than those featured in our dataset. Therefore, this scaling may serve for future modeling of grain size transfer from hillslopes to rivers, with the aim to better understanding landslide sediment evacuation and coupling to river erosional dynamics.


Author(s):  
Arden Phua ◽  
Christian Doblin ◽  
Phil Owen ◽  
Chris H.J. Davies ◽  
Gary W. Delaney

2021 ◽  
Vol 388 ◽  
pp. 82-89
Author(s):  
Mengxiang Jiang ◽  
Ping Wu ◽  
Likang Hu ◽  
Heping Fu ◽  
Biduan Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document