Shear-induced particle size segregation in composite powder transfer films

2014 ◽  
Vol 264 ◽  
pp. 133-139 ◽  
Author(s):  
Patrick S.M. Dougherty ◽  
Martin C. Marinack ◽  
Cecily M. Sunday ◽  
C. Fred Higgs
2012 ◽  
Vol 519 ◽  
pp. 87-91 ◽  
Author(s):  
Xia Ni Huang ◽  
Zhang Han Wu ◽  
Ke Cao ◽  
Wen Zeng ◽  
Chun Ju Lv ◽  
...  

In the present investigation, the Al-C-KCl composite powders were prepared by a ball milling processing in an attempt to improve the hydrogen evolution capacity of aluminum in water. The results showed that the hydrogen generation reaction is affected by KCl amount, preparation processing, initial aluminum particle size and reaction temperature. Increasing KCl amount led to an increased hydrogen generation volume. The use of aluminum powder with a fine particle size could promote the aluminum hydrolysis reaction and get an increased hydrogen generation rate. The reaction temperature played an important role in hydrogen generation rate and the maximum hydrogen generation rate of 44.8 cm3 min-1g-1of Al was obtained at 75oC. The XRD results identified that the hydrolysis byproducts are bayerite (Al(OH)3) and boehmite (AlOOH).


2008 ◽  
Vol 48 (12) ◽  
pp. 1696-1703 ◽  
Author(s):  
Hiroshi Mio ◽  
Satoshi Komatsuki ◽  
Masatoshi Akashi ◽  
Atsuko Shimosaka ◽  
Yoshiyuki Shirakawa ◽  
...  

2010 ◽  
Author(s):  
J. M. N. T. Gray ◽  
Joe Goddard ◽  
Pasquale Giovine ◽  
James T. Jenkins

2020 ◽  
Vol 991 ◽  
pp. 94-100
Author(s):  
Umira Asyikin Yusop ◽  
Tan Kang Huai ◽  
Hamimah Abdul Rahman ◽  
Nurul Akidah Baharuddin ◽  
Jarot Raharjo

A low operating temperature is one of the concerns in commercialising solid oxide fuel cells (SOFCs) as a portable power source. The aim of this research is to develop a new cathode material, barium strontium cobalt ferrite–samarium doped ceria (BSCF-SDC) added with argentum (Ag) for low-temperature SOFCs (LT-SOFCs). The composite powder was prepared through high-energy ball milling at 550 rpm for 2 h with a BSCF:SDC powder ratio of 50:50. The composite powder was calcined at 950 °C for 2 h and then mixed with Ag (1wt%, 3wt% and 5wt%) via dry milling at 150 rpm. The phase stability of the resulting samples was examined by X-ray diffractometry, and powder particle sizes were determined by using a Zeta-Sizer Nano ZS. The thermal stability of each sample was determined on the basis of thermal expansion coefficients (TECs), and electrochemical characteristics were determined through electrochemical impedance spectroscopy to investigate the performance of BSCF-SDC-Ag in LT-SOFCs (400–600 °C). Phase analysis demonstrated no impurity phases existed. Particle size analysis revealed that increment in Ag content affect the particle size of BSCF-SDCC. TEC analysis demonstrated that BSCF-SDC-Ag1% has a mismatch value of 16.39%, which is within the acceptable TEC range of 15%–20%. BSCF-SDC-Ag1% showed a maximum conductivity of 39.37Scm-1 at 600 °C.


Sign in / Sign up

Export Citation Format

Share Document