Sea Surface Height Variability in the 30–120 km Wavelength Band From Altimetry Along‐Track Observations

2021 ◽  
Vol 126 (4) ◽  
Author(s):  
Shuiming Chen ◽  
Bo Qiu
2013 ◽  
Vol 31 (2) ◽  
pp. 271 ◽  
Author(s):  
Leonardo Nascimento Lima ◽  
Clemente Augusto Souza Tanajura

ABSTRACT. In this study, assimilation of Jason-1 and Jason-2 along-track sea level anomaly (SLA) data was conducted in a region of the tropical and South Atlantic (7◦N-36◦S, 20◦W up to the Brazilian coast) using an optimal interpolation method and the HYCOM (Hybrid Coordinate Ocean Model). Four 24 h-forecast experiments were performed daily from January 1 until March 31, 2011 considering different SLA assimilation data windows (1 day and 2 days) and different coefficients in the parameterization of the SLA covariance matrix model. The model horizontal resolution was 1/12◦ and the number of vertical layers was 21. The SLA analyses added to the mean sea surface height were projected to the subsurface with the Cooper & Haines (1996) scheme. The results showed that the experiment with 2-day window of along-track data and with specific parameterizations of the model SLA covariance error for sub-regions of the METAREA V was the most accurate. It completely reconstructed the model sea surface height and important improvements in the circulation were produced. For instance, there was a substantial improvement in the representation of the Brazil Current and North Brazil Undercurrent. However, since no assimilation of vertical profiles of temperature and salinity and of sea surface temperature was performed, the methodology employed here should be considered only as a step towards a high quality analysis for operational forecasting systems.   Keywords: data assimilation, optimal interpolation, Cooper & Haines scheme, altimetry data.   RESUMO. Neste estudo, a assimilação de dados de anomalia da altura da superfície do mar (AASM) ao longo da trilha dos satélites Jason-1 e Jason-2 foi conduzida em uma região do Atlântico tropical e Sul (7◦N-36◦S, 20◦W até a costa do Brasil) com o método de interpolação ótima e o modelo oceânico HYCOM (Hybrid Coordinate Ocean Model). Foram realizados quatro experimentos de previsão de 24 h entre 1 de janeiro e 31 de março de 2011, considerando diferentes janelas de assimilação de AASM (1 dia e 2 dias) e diferentes coeficientes na parametrização da matriz de covariância dos erros de AASM do modelo. A resolução horizontal empregada no HYCOM foi 1/12◦ para 21 camadas verticais. As correções de altura da superfície do mar devido à assimilação de AASM foram projetadas abaixo da camada de mistura através da técnica de Cooper & Haines (1996). Os resultados mostraram que o experimento com assimilação de dados ao longo da trilha dos satélites com a janela de 2 dias e com parametrizações da matriz de covariância específicas para sub-regiões da METAREA V foi o mais acurado. Ele reconstruiu completamente a altura da superfície do mar e também proporcionou melhorias na circulação oceânica reproduzida pelo modelo. Por exemplo, houve substancial melhoria da representação nos campos da Corrente do Brasil e Subcorrente Norte do Brasil. Entretanto, tendo em vista que não foi realizada a assimilação de perfis verticais de temperatura e de salinidade e da temperatura da superfície do mar, a metodologia apresentada deve ser considerada apenas como um passo na conquista de uma análise oceânica e de um sistema previsor de qualidade para fins operacionais.   Palavras-chave: assimilação de dados, interpolação ótima, técnica de Cooper & Haines, dados de altimetria.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shihong Wang ◽  
Fangli Qiao ◽  
Dejun Dai ◽  
Xiaohui Zhou

Abstract In this paper, the zonal and meridional sea surface height (SSH) wavenumber spectra are systematically calculated using along-track and gridded altimeter products, and the slopes of the SSH wavenumber spectra over the mesoscale band, which is defined by the characteristic length scale of mesoscale signals, are estimated. The results show that the homogeneous spectral slopes calculated from the along-track and gridded altimeter datasets have a similar spatial pattern, but the spectral slopes from gridded altimeter data are generally steeper than that from the along-track data with an averaged difference of 1.5. Significant differences are found between the zonal and meridional spectra, which suggest that SSH wavenumber spectra are indeed anisotropic. Furthermore, the anisotropy exhibits strong regional contrast: in the equatorial region, the zonal spectrum is steeper than its corresponding meridional spectrum, while in the eastward-flowing high EKE regions the meridional spectrum is steeper than its zonal counterpart. The anisotropy of SSH wavenumber spectral slopes implies that EKE distributes anisotropically in different directions, and this distribution is closely associated with the generation and nonlinear evolution of mesoscale movements.


2016 ◽  
Vol 144 (3) ◽  
pp. 1051-1068 ◽  
Author(s):  
Matthew J. Carrier ◽  
Hans E. Ngodock ◽  
Philip Muscarella ◽  
Scott Smith

Abstract The assimilation of surface velocity observations and their impact on the model sea surface height (SSH) is examined using an operational regional ocean model and its four-dimensional variational data assimilation (4DVAR) analysis component. In this work, drifter-derived surface velocity observations are assimilated into the Navy’s Coastal Ocean Model (NCOM) 4DVAR in weak-constraint mode for a Gulf of Mexico (GoM) experiment during August–September 2012. During this period the model is trained by assimilating surface velocity observations (in a series of 96-h assimilation windows), which is followed by a 30-day forecast through the month of October 2012. A free-run model and a model that assimilates along-track SSH observations are also run as baseline experiments to which the other experiments are compared. It is shown here that the assimilation of surface velocity measurements has a substantial impact on improving the model representation of the forecast SSH on par with the experiment that assimilates along-track SSH observations directly. Finally, an assimilation experiment is done where both along-track SSH and velocity observations are utilized in an attempt to determine if the observation types are redundant or complementary. It is found that the combination of observations provides the best SSH forecast, in terms of the fit to observations, when compared to the previous experiments.


2011 ◽  
Vol 139 (3) ◽  
pp. 738-754 ◽  
Author(s):  
Andrea Storto ◽  
Srdjan Dobricic ◽  
Simona Masina ◽  
Pierluigi Di Pietro

Abstract A global ocean three-dimensional variational data assimilation system was developed with the aim of assimilating along-track sea level anomaly observations, along with in situ observations from bathythermographs and conventional sea stations. All the available altimetric data within the period October 1992–January 2006 were used in this study. The sea level corrections were covariated with vertical profiles of temperature and salinity according to the bivariate definition of the background-error vertical covariances. Sea level anomaly observational error variance was carefully defined as a sum of instrumental, representativeness, observation operator, and mean dynamic topography error variances. The mean dynamic topography was computed from the model long-term mean sea surface height and adjusted through an optimal interpolation scheme to account for observation minus first-guess biases. Results show that the assimilation of sea level anomaly observations improves the model sea surface height skill scores as well as the subsurface temperature and salinity fields. Furthermore, the estimate of the tropical and subtropical surface circulation is clearly improved after assimilating altimetric data. Nonnegligible impacts of the mean dynamic topography used have also been found: compared to a gravimeter-based mean dynamic topography the use of the mean dynamic topography discussed in this paper improves both the consistency with sea level anomaly observations and the verification skill scores of temperature and salinity in the tropical regions. Furthermore, the use of a mean dynamic topography computed from the model long-term sea surface height mean without observation adjustments results in worsened verification skill scores and highlights the benefits of the current approach for deriving the mean dynamic topography.


2021 ◽  
Author(s):  
Clément Ubelmann ◽  
Loren Carrere ◽  
Chloé Durand ◽  
Gérald Dibarboure ◽  
Yannice Faugère ◽  
...  

Abstract. This study proposes an approach to estimate the Ocean Sea Surface Height signature of coherent internal tidesfrom 25 years of along-track altimetry record, with a single inversion over time, resolving both internal tide contributions andmesoscale eddy variability. The inversion is performed through reduced-order basis with conjugate gradient resolution. Theparticularity of this approach is to mitigate the potential aliasing effects between mesoscales and internal tide estimation fromthe uneven altimetry sampling (observing the sum of these components) by accounting of their statistics simultaneously, while other methods generally use a prior for mesoscales. The four major tidal components are considered (M2,K1,S2,O1) over theperiod 1992–2017 on a global configuration. From the solution, we use altimetry data after 2017 for an independent validation,to evaluate the benefits of the simultaneous inversion, and also to compare the skills with an existing model.


2016 ◽  
Vol 33 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Edward D. Zaron ◽  
Robert deCarvalho

AbstractData from the Jason-2 calibration/validation mission phase have been analyzed to identify the correlation between sea surface height (SSH) and significant wave height (SWH) errors. A cross-spectral analysis indicates that the SSH and SWH errors are nearly white and significantly correlated at scales from 12 to 100 km, consistent with the hypothesized error source, the waveform retracker. Because of the scale separation between the SWH signal and noise, it is possible to correct the SSH data by removing the SSH noise correlated with the SWH noise. Such a correction has been implemented using the empirical correlation found during the Jason-2 calibration orbit phase and applied to independent data from other phases of the Jason-1 mission. The efficacy of the correction varies geographically, but variance reductions between 1.6 and 2.2 cm2 have been obtained, corresponding to reductions of 20%–27% in the noise floor of along-track spectra. The corrections are obtained from and applied to conventional, 1 Hz, altimetry data and lead to improvements in the signal-to-noise ratio for identification of high-frequency narrowband processes—for example, internal tides—from these data.


Sign in / Sign up

Export Citation Format

Share Document