Extreme Ozone Loss Following Nuclear War Results in Enhanced Surface Ultraviolet Radiation

Author(s):  
Charles G. Bardeen ◽  
Douglas E. Kinnison ◽  
Owen B. Toon ◽  
Michael J. Mills ◽  
Francis Vitt ◽  
...  
2021 ◽  
Vol 21 (18) ◽  
pp. 14019-14037
Author(s):  
Jayanarayanan Kuttippurath ◽  
Wuhu Feng ◽  
Rolf Müller ◽  
Pankaj Kumar ◽  
Sarath Raj ◽  
...  

Abstract. Severe vortex-wide ozone loss in the Arctic would expose both ecosystems and several millions of people to unhealthy ultraviolet radiation. Adding to these worries, and extreme events as the harbingers of climate change, exceptionally low ozone with column values below 220 DU occurred over the Arctic in March and April 2020. Sporadic occurrences of low ozone with less than 220 DU at different regions of the vortex for almost 3 weeks were found for the first time in the observed history in the Arctic. Furthermore, a large ozone loss of about 2.0–3.4 ppmv triggered by an unprecedented chlorine activation (1.5–2.2 ppbv) matching the levels occurring in the Antarctic was also observed. The polar processing situation led to the first-ever appearance of loss saturation in the Arctic. Apart from these, there were also ozone-mini holes in December 2019 and January 2020 driven by atmospheric dynamics. The large loss in ozone in the colder Arctic winters is intriguing and demands rigorous monitoring of the region.


Author(s):  
William J. Baxter

In this form of electron microscopy, photoelectrons emitted from a metal by ultraviolet radiation are accelerated and imaged onto a fluorescent screen by conventional electron optics. image contrast is determined by spatial variations in the intensity of the photoemission. The dominant source of contrast is due to changes in the photoelectric work function, between surfaces of different crystalline orientation, or different chemical composition. Topographical variations produce a relatively weak contrast due to shadowing and edge effects.Since the photoelectrons originate from the surface layers (e.g. ∼5-10 nm for metals), photoelectron microscopy is surface sensitive. Thus to see the microstructure of a metal the thin layer (∼3 nm) of surface oxide must be removed, either by ion bombardment or by thermal decomposition in the vacuum of the microscope.


2006 ◽  
Vol 175 (4S) ◽  
pp. 260-260
Author(s):  
Nicholas J. Rukin ◽  
Samuel J. Moon ◽  
Dhaval Bodiwala ◽  
Christopher J. Luscombe ◽  
Mark F. Saxby ◽  
...  

1988 ◽  
Vol 43 (4) ◽  
pp. 318-321 ◽  
Author(s):  
Michael D. Intriligator ◽  
Dagobert L. Brito

Sign in / Sign up

Export Citation Format

Share Document