scholarly journals Evidence of recent active volcanism in the Balleny Islands (Antarctica) from ice core records

Author(s):  
Dieter. R. Tetzner ◽  
Elizabeth. R. Thomas ◽  
Claire. S. Allen ◽  
Alma. Piermattei
2021 ◽  
Author(s):  
Dieter R Tetzner ◽  
Elizabeth Ruth Thomas ◽  
Claire S Allen ◽  
Alma Piermattei

2021 ◽  
Vol 34 (10) ◽  
pp. 3839-3852
Author(s):  
Stacy E. Porter ◽  
Ellen Mosley-Thompson ◽  
Lonnie G. Thompson ◽  
Aaron B. Wilson

AbstractUsing an assemblage of four ice cores collected around the Pacific basin, one of the first basinwide histories of Pacific climate variability has been created. This ice core–derived index of the interdecadal Pacific oscillation (IPO) incorporates ice core records from South America, the Himalayas, the Antarctic Peninsula, and northwestern North America. The reconstructed IPO is annually resolved and dates to 1450 CE. The IPO index compares well with observations during the instrumental period and with paleo-proxy assimilated datasets throughout the entire record, which indicates a robust and temporally stationary IPO signal for the last ~550 years. Paleoclimate reconstructions from the tropical Pacific region vary greatly during the Little Ice Age (LIA), although the reconstructed IPO index in this study suggests that the LIA was primarily defined by a weak, negative IPO phase and hence more La Niña–like conditions. Although the mean state of the tropical Pacific Ocean during the LIA remains uncertain, the reconstructed IPO reveals some interesting dynamical relationships with the intertropical convergence zone (ITCZ). In the current warm period, a positive (negative) IPO coincides with an expansion (contraction) of the seasonal latitudinal range of the ITCZ. This relationship is not stationary, however, and is virtually absent throughout the LIA, suggesting that external forcing, such as that from volcanoes and/or reduced solar irradiance, could be driving either the ITCZ shifts or the climate dominating the ice core sites used in the IPO reconstruction.


2013 ◽  
Vol 9 (4) ◽  
pp. 1403-1416 ◽  
Author(s):  
S. Preunkert ◽  
M. Legrand

Abstract. Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl−, NO3−, and SO42−) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921–1951 to 1971–1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.


2017 ◽  
Vol 44 (17) ◽  
pp. 9084-9092 ◽  
Author(s):  
J. Scott Hosking ◽  
Ryan Fogt ◽  
Elizabeth R. Thomas ◽  
Vahid Moosavi ◽  
Tony Phillips ◽  
...  

2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


Sign in / Sign up

Export Citation Format

Share Document