scholarly journals Atmospheric CO 2 exchange of a small mountain lake: limitations of eddy covariance and boundary layer modeling methods in complex terrain.

Author(s):  
K. Scholz ◽  
E. Ejarque ◽  
A. Hammerle ◽  
M. Kainz ◽  
J. Schelker ◽  
...  
2021 ◽  
Author(s):  
Katharina Scholz ◽  
Elisabet Ejarque ◽  
Albin Hammerle ◽  
Martin Johann Kainz ◽  
Jakob Schelker ◽  
...  

Tellus B ◽  
2021 ◽  
Vol 73 (1) ◽  
pp. 1-26
Author(s):  
Piotr Sekuła ◽  
Anita Bokwa ◽  
Zbigniew Ustrnul ◽  
Mirosław Zimnoch ◽  
Bogdan Bochenek

Author(s):  
Branden Katona ◽  
Paul Markowski

AbstractStorms crossing complex terrain can potentially encounter rapidly changing convective environments. However, our understanding of terrain-induced variability in convective stormenvironments remains limited. HRRR data are used to create climatologies of popular convective storm forecasting parameters for different wind regimes. Self-organizing maps (SOMs) are used to generate six different low-level wind regimes, characterized by different wind directions, for which popular instability and vertical wind shear parameters are averaged. The climatologies show that both instability and vertical wind shear are highly variable in regions of complex terrain, and that the spatial distributions of perturbations relative to the terrain are dependent on the low-level wind direction. Idealized simulations are used to investigate the origins of some of the perturbations seen in the SOM climatologies. The idealized simulations replicate many of the features in the SOM climatologies, which facilitates analysis of their dynamical origins. Terrain influences are greatest when winds are approximately perpendicular to the terrain. In such cases, a standing wave can develop in the lee, leading to an increase in low-level wind speed and a reduction in vertical wind shear with the valley lee of the plateau. Additionally, CAPE tends to be decreased and LCL heights are increased in the lee of the terrain where relative humidity within the boundary layer is locally decreased.


1995 ◽  
Vol 2 (1) ◽  
pp. 30-48 ◽  
Author(s):  
E. Hernández ◽  
J. Díaz ◽  
L. C. Cana ◽  
A. García

Abstract. The atmospheric behaviour near an orographic obstacle has been thoroughly studied in the last decades. The first papers in this field were mainly theoretical, being more recent the laboratory experiments which represented that behaviour in ideal conditions. The numerical simulations have been addressed lately thanks to the development of computers. But the study of meteorology in complex terrain has lacked experiments in the atmosphere to understand the real influence the relief has on it. In this paper the problem has been considered from the last perspective, and so, seasons of measure of the atmospheric variables within the boundary layer have been organized with the goal of checking existing theories and bringing right conclusions from real experiment in the atmosphere. Controverted aspects of linear and nonlinear theories, as the location of critical points upwind and downwind of an orographic obstacle, will be analyzed. The results obtained show a large adequacy between the forecasted behaviour and the experimentally detected.


1998 ◽  
Vol 32 (7) ◽  
pp. 1323-1348 ◽  
Author(s):  
M. Kossmann ◽  
R. Vögtlin ◽  
U. Corsmeier ◽  
B. Vogel ◽  
F. Fiedler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document