scholarly journals R2O2R Improvements Identified by United States Space Weather Forecasters

Space Weather ◽  
2021 ◽  
Author(s):  
E.C. Bulter ◽  
J.M. Keller
2017 ◽  
Vol 32 (3) ◽  
pp. 1007-1028 ◽  
Author(s):  
Wyndam R. Lewis ◽  
W. James Steenburgh ◽  
Trevor I. Alcott ◽  
Jonathan J. Rutz

Abstract Contemporary operational medium-range ensemble modeling systems produce quantitative precipitation forecasts (QPFs) that provide guidance for weather forecasters, yet lack sufficient resolution to adequately resolve orographic influences on precipitation. In this study, cool-season (October–March) Global Ensemble Forecast System (GEFS) QPFs are verified using daily (24 h) Snow Telemetry (SNOTEL) observations over the western United States, which tend to be located at upper elevations where the orographic enhancement of precipitation is pronounced. Results indicate widespread dry biases, which reflect the infrequent production of larger 24-h precipitation events (≳22.9 mm in Pacific ranges and ≳10.2 mm in the interior ranges) compared with observed. Performance metrics, such as equitable threat score (ETS), hit rate, and false alarm ratio, generally worsen from the coast toward the interior. Probabilistic QPFs exhibit low reliability, and the ensemble spread captures only ~30% of upper-quartile events at day 5. In an effort to improve QPFs without exacerbating computing demands, statistical downscaling is explored based on high-resolution climatological precipitation analyses from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM), an approach frequently used by operational forecasters. Such downscaling improves model biases, ETSs, and hit rates. However, 47% of downscaled QPFs for upper-quartile events are false alarms at day 1, and the ensemble spread captures only 56% of the upper-quartile events at day 5. These results should help forecasters and hydrologists understand the capabilities and limitations of GEFS forecasts and statistical downscaling over the western United States and other regions of complex terrain.


1969 ◽  
Vol 50 (11) ◽  
pp. 857-866 ◽  
Author(s):  
Jerome Spar ◽  
Howard A. Friedman ◽  
Fred L. Zuckerberg

During the 1966–67 and 1967–68 winter seasons, the ESSA Research Flight Facility carried out several weather reconnaissance missions in east coastal cyclones as part of a project on snow prediction in the northeastern United States. The operation of the aircraft program and the meteorological observations of primary interest are described. The aircraft reconnaissance system is found to be of significant potential value to east coast weather forecasters.


HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1643-1647 ◽  
Author(s):  
Michele Renee Warmund ◽  
Patrick Guinan ◽  
Gina Fernandez

An unprecedented freeze occurred between 4 and 10 Apr. 2007, causing extensive crop loss across a large area of the United States. This event occurred late in the spring and temperatures were unusually low for an extended period. Low-temperature injury on small fruit plants was reported in 21 states. Missouri and Arkansas experienced the highest estimated percentages of crop loss of grape (Vitis spp.), strawberry (Fragraria ×ananassa Duch.), blueberry (Vaccinium spp.), and blackberry (Rubus subgenus Rubus Watson). Kentucky and Tennessee also reported high percentages of small fruit crop loss. Temperatures preceding the freeze event in the affected region were unusually warm and many of the crops were at a more advanced stage of growth than they would have been under more usual conditions. Although frost/freeze warnings were issued, the terminology used by different weather forecasters was inconsistent. Growers used various cold protection methods, but these were generally ineffective because of the stage of plant development and/or the advective nature of the freeze. Actual grape and blueberry crop losses may not be known for several years because of secondary injury to plant tissues from various pathogens.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Shannon Kelleher

A heightened understanding of geomagnetic disturbances in a high-tech world encourages policy changes in the United States and abroad.


2021 ◽  
Author(s):  
Jasa Calogovic ◽  
Mateja Dumbović ◽  
Davor Sudar ◽  
Bojan Vršnak ◽  
Karmen Martinić ◽  
...  

<p><span>The Drag-based Model (DBM) is an analytical model for heliospheric propagation of Coronal Mass Ejections (CMEs) that predicts the CME arrival time and speed at Earth or any other given target in the solar system. It is based on the equation of motion and depends on initial CME parameters, background solar wind speed, w and the drag parameter γ. A very short computational time of DBM (< 0.01s) allowed us to develop the Drag-Based Ensemble Model (DBEM) that considers the variability of model input parameters by making an ensemble of n different input parameters to calculate the distribution and significance of the DBM results. Using such an approach, we apply DBEM to determine the most likely CME arrival times and speeds, quantify the prediction uncertainties and calculate the confidence intervals. Recently, a new DBEMv3 version was developed including the various improvements and Graduated Cylindrical Shell (GCS) option for the CME geometry input as well as the CME propagation visualizations. Thus, we compare the DBEMv3 with previous DBEM versions (e.g. DBEMv2), evaluate it and determine the DBEMv3 performance and errors by using various CME-ICME lists. Compared to the previous versions, the DBEMv3 provides very similar results for all calculated output parameters with slight improvement in the performance. Based on the evaluation performed for 146 CME-ICME pairs, the DBEMv3 performance with mean error (ME) of -11.3 h, mean absolute error (MAE) of 17.3 h was obtained, similar to previous DBM and DBEM evaluations. Fully operational DBEMv3 web application was integrated as one of the ESA Space Situational Awareness portal services (https://swe.ssa.esa.int/current-space-weather) providing an important tool for space weather forecasters.</span></p>


Sign in / Sign up

Export Citation Format

Share Document