Comment on “On the Rootless Nature of a Devonian Suture in SW Iberia (Ossa‐Morena Complex, Variscan Orogen): Geometry and Kinematics of the Azuaga Fault” by Díez Fernández et al. (2021)

Tectonics ◽  
2022 ◽  
Author(s):  
Antonio Azor ◽  
Fernando Simancas ◽  
David Martínez Poyatos ◽  
Francisco González Lodeiro
Tectonics ◽  
2021 ◽  
Author(s):  
Rubén Díez Fernández ◽  
Carlos Fernández ◽  
Ricardo Arenas ◽  
Irene Novo‐Fernández

2019 ◽  
Vol 232 ◽  
pp. 111300
Author(s):  
Xiaogang Song ◽  
Nana Han ◽  
Xinjian Shan ◽  
Chisheng Wang ◽  
Yingfeng Zhang ◽  
...  

Author(s):  
Chai Shaoye ◽  
Li Chuanxin ◽  
Lu Xuesong ◽  
Zhuo Qingong ◽  
Gong Yanjie

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emanuele Tondi ◽  
Anna Maria Blumetti ◽  
Mišo Čičak ◽  
Pio Di Manna ◽  
Paolo Galli ◽  
...  

AbstractWe provide here a first-hand description of the coseismic surface effects caused by the Mw 6.4 Petrinja earthquake that hit central Croatia on 29 December 2020. This was one of the strongest seismic events that occurred in Croatia in the last two centuries. Field surveys in the epicentral area allowed us to observe and map primary coseismic effects, including geometry and kinematics of surface faulting, as well as secondary effects, such as liquefaction, sinkholes and landslides. The resulting dataset consists of homogeneous georeferenced records identifying 222 observation points, each of which contains a minimum of 5 to a maximum of 14 numeric and string fields of relevant information. The earthquake caused surface faulting defining a typical ‘conjugate’ fault pattern characterized by Y and X shears, tension cracks (T fractures), and compression structures (P shears) within a ca. 10 km wide (across strike), NW–SE striking right-lateral strike-slip shear zone (i.e., the Petrinja Fault Zone, PFZ). We believe that the results of the field survey provide fundamental information to improve the interpretation of seismological, GPS and InSAR data of this earthquake. Moreover, the data related to the surface faulting may impact future studies focused on earthquake processes in active strike-slip settings, integrating the estimates of slip amount and distribution in assessing the hazard associated with capable transcurrent faults.


2001 ◽  
Vol 80 (3-4) ◽  
pp. 209-227 ◽  
Author(s):  
M. Onida ◽  
F. Galadini ◽  
F. Forcella

AbstractPaleoseismological techniques have been used to investigate gravitational deformations at the Mortirolo Pass (Valtellina region, central Alps), in order to improve the knowledge on the activation mechanisms and the evolution of deep-seated gravitational slope movements. The deformation has been responsible for mass sliding towards the Valtellina depression through the activation of several-hundred-metre-long shear planes. Minor shear planes dipping towards the mountain played the role of antithetic structures. Four trenches were excavated across scarps representing the surficial expression of shear planes affecting the bedrock and Late Pleistocene-Holocene deposits. The excavations enabled to investigate the stratigraphy of Quaternary deposits and the geometry and kinematics of the shear planes affecting them. Radiocarbon analyses on organic material contained in sediments and paleosols enabled to define a succession of displacement events which occurred during the Late Pleistocene-Holocene. Collected data indicate the persistence of the activity until recent times (last movement related to 1810-1540 cal. BP). A sudden movement has been detected along one of the main shear surfaces (dipping towards the valley) with a vertical displacement of several metres. In contrast, numerous displacements (with lower vertical offset) have been detected along the antithetic shear planes. Different hypotheses have been proposed in the past to define the origin of huge gravitational movements (glacial retreat, uplift of the Alpine chain, fault activity). However, the Late Pleistocene cycles of glacial loading and unloading on the mountain slopes seem to be the most probable factors causing deep-seated gravitational movements in the investigated region. A recent dramatic landslide in an area adjacent to the investigated one (Mt. Zandila-Valpola) testifies to the paroxistic evolution of the large scale gravitational deformations. The densely inhabited Valtellina region is affected by a large number of gravitational structures similar to those of the Mortirolo area. In consideration of the possible effects of the paroxistic activation of these structures, detailed studies on the chronology and kinematics of the deformations through the application of paleoseismological techniques should therefore be encouraged.


2009 ◽  
Vol 104 (1-2) ◽  
pp. 41-54 ◽  
Author(s):  
M. Yenes ◽  
S. Monterrubio ◽  
J. Nespereira ◽  
G. Santos

Sign in / Sign up

Export Citation Format

Share Document