On spectral measure and Monte Carlo Approaches to flow in heterogeneous media

1992 ◽  
Vol 28 (5) ◽  
pp. 1447-1450 ◽  
Author(s):  
Fei-Wen Deng ◽  
John H. Cushman
2010 ◽  
Vol 03 (02) ◽  
pp. 91-102 ◽  
Author(s):  
TING LI ◽  
HUI GONG ◽  
QINGMING LUO

The Monte Carlo code MCML (Monte Carlo modeling of light transport in multi-layered tissue) has been the gold standard for simulations of light transport in multi-layer tissue, but it is ineffective in the presence of three-dimensional (3D) heterogeneity. New techniques have been attempted to resolve this problem, such as MCLS, which is derived from MCML, and tMCimg, which draws upon image datasets. Nevertheless, these approaches are insufficient because of their low precision or simplistic modeling. We report on the development of a novel model for photon migration in voxelized media (MCVM) with 3D heterogeneity. Voxel crossing detection and refractive-index-unmatched boundaries were considered to improve the precision and eliminate dependence on refractive-index-matched tissue. Using a semi-infinite homogeneous medium, steady-state and time-resolved simulations of MCVM agreed well with MCML, with high precision (~100%) for the total diffuse reflectance and total fractional absorption compared to those of tMCimg (< 70%). Based on a refractive-index-matched heterogeneous skin model, the results of MCVM were found to coincide with those of MCLS. Finally, MCVM was applied to a two-layered sphere with multi-inclusions, which is an example of a 3D heterogeneous media with refractive-index-unmatched boundaries. MCVM provided a reliable model for simulation of photon migration in voxelized 3D heterogeneous media, and it was developed to be a flexible and simple software tool that delivers high-precision results.


2019 ◽  
Vol 19 (1) ◽  
pp. 76-83
Author(s):  
Ayse Dagli ◽  
Fatma Yurt ◽  
Gultekin Yegin

AbstractAim:The aim of this study is to investigate the accuracy of dose distributions calculated by the BrachyDose Monte Carlo (MC) code in heterogeneous media for high-dose-rate (HDR) brachytherapy and to evaluate its usability in the clinical brachytherapy treatment planning systems.Materials and methods:For dose comparisons, three different dose calculation algorithms were used in this study. Namely, BrachyDose MC code, Eclipse TG-43 dose calculation tool and Acuros®BV model-based dose calculation algorithm (MBDCA). Dose distributions were obtained using any of the above codes in various scenarios including ‘homogenous water medium scenario’, an ‘extreme case heterogeneous media scenario’ and clinically important ‘a patient with a cervical cancer scenario’. In the ‘extreme case, heterogeneous media scenario’, geometry is a rare combination of unusual high-density and low-density materials and it is chosen to provide a test environment for the propagation of photons in the interface of two materials with different absorption and scattering properties. GammaMed 192Ir Model 12i Source is used as the HDR brachytherapy source in this study. Dose calculations were performed for the cases where there is either a single source or five sources planted into the phantom geometry in all homogenous water phantom and extreme case heterogeneous media scenarios. For the scenario a patient with a cervical cancer, dose calculations were performed in a voxelized rectilinear phantom, which is constructed from a series of computed tomography (CT) slices of a patient, which are obtained from a CT device.Results:In homogeneous water phantom scenario, we observed no statistically significant dose differences among the dose distributions calculated by any of the three algorithms at almost every point in the geometry. In the extreme case heterogeneous media scenario, the dose calculation engines Acuros®BV and BrachyDose are agreed well within statistics in every region of the geometry and even in the points close to the interfaces of low-density and high-density materials. On the other hand, the dose values calculated by these two codes are significantly different from those calculated by the TG-43 algorithm. In the ‘a patient with a cervical cancer scenario’, the calculated D2cc dose difference between Acuros®BV and BrachyDose codes is within 2% in the rectum and 11% for the bladder and sigmoid. There was no meaningful difference in the mean dose values between MBDCAs in the bone structures.Conclusions:In this study, the accurate dose calculation capabilities of the BrachyDose program in HDR brachytherapy were investigated on various scenarios and, as a MC dose calculation tool, its effectiveness in HDR brachytherapy was demonstrated by comparative dose analysis.


Author(s):  
Carole K. Hayakawa ◽  
Vanitha Sankaran ◽  
Frédéric Bevilacqua ◽  
Jerome Spanier ◽  
Vasan Venugopalan

1994 ◽  
Vol 367 ◽  
Author(s):  
S.A. Timan ◽  
V.G. Oshmian

AbstractThe mechanical properties of the 2D elastic rigid-nonrigid disordered system in dependence on the concentrations of the rigid phase are studied. The system is constructed on the basis of the square lattice and finite element method (FEM) approximation. The elasticity threshold of the FE system and the critical exponents are detemined by the phenomenological renormalization (PR) of the Monte Carlo data.


2011 ◽  
Vol 56 (11) ◽  
pp. 3313-3335 ◽  
Author(s):  
Wencke Lehnert ◽  
Marie-Claude Gregoire ◽  
Anthonin Reilhac ◽  
Steven R Meikle

Sign in / Sign up

Export Citation Format

Share Document