scholarly journals Ice flow dynamics of the Greenland Ice Sheet from SAR interferometry

1995 ◽  
Vol 22 (5) ◽  
pp. 575-578 ◽  
Author(s):  
E. Rignot ◽  
K. C. Jezek ◽  
H. G. Sohn
2018 ◽  
Author(s):  
Sébastien Le clec'h ◽  
Aurélien Quiquet ◽  
Sylvie Charbit ◽  
Christophe Dumas ◽  
Masa Kageyama ◽  
...  

Abstract. Providing reliable projections of the ice-sheet contribution to future sea-level rise has become one of the main challenges of the ice-sheet modelling community. To increase confidence in future projections, a good knowledge of the present-day state of the ice flow dynamics, which is critically dependent on basal conditions, is strongly needed. The main difficulty is tied to the scarcity of observations at the ice-bed interface at the scale of the whole ice sheet, resulting in poorly constrained parameterisations in ice-sheet models. To circumvent this drawback, inverse modelling approaches can be developed and validated against available data to infer reliable initial conditions of the ice sheet. Here, we present a spin-up method for the Greenland ice sheet using the thermo-mechanical hybrid GRISLI ice-sheet model. Our approach is based on the adjustment of the basal drag coefficient that relates the sliding velocities at the ice-bed interface to basal shear stress in unfrozen bed areas. This method relies on an iterative process in which the basal drag is periodically adjusted in such as way that the simulated ice thickness matches the observed one. The process depends on three parameters controlling the duration and the number of iterations. The best spin-up parameters are chosen according to two criteria to minimize errors in sea-level projections: the final difference between the simulated and the observed Greenland ice volume as well as the final ice volume trend which must both be as low as possible. To increase confidence in the inferred parameters, we also make sure that the final ice thickness root mean square error from the observations is not greater than a few tens of meters. Our best results are obtained after only 420 years of simulation, highlighting a rapid convergence and demonstrating that our method can be used for computationally expensive ice sheet models.


2013 ◽  
Vol 59 (216) ◽  
pp. 733-749 ◽  
Author(s):  
H. Goelzer ◽  
P. Huybrechts ◽  
J.J. Fürst ◽  
F.M. Nick ◽  
M.L. Andersen ◽  
...  

AbstractPhysically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31 % higher sea-level contribution compared to a PDD model run with the same parameters as for IPCC AR4.


2021 ◽  
Vol 15 (3) ◽  
pp. 1587-1606
Author(s):  
Corinne L. Benedek ◽  
Ian C. Willis

Abstract. Surface lakes on the Greenland Ice Sheet play a key role in its surface mass balance, hydrology and biogeochemistry. They often drain rapidly in the summer via hydrofracture, which delivers lake water to the ice sheet base over timescales of hours to days and then can allow meltwater to reach the base for the rest of the summer. Rapid lake drainage, therefore, influences subglacial drainage evolution; water pressures; ice flow; biogeochemical activity; and ultimately the delivery of water, sediments and nutrients to the ocean. It has generally been assumed that rapid lake drainage events are confined to the summer, as this is typically when observations are made using satellite optical imagery. Here we develop a method to quantify backscatter changes in satellite radar imagery, which we use to document the drainage of six different lakes during three winters (2014/15, 2015/16 and 2016/17) in fast-flowing parts of the Greenland Ice Sheet. Analysis of optical imagery from before and after the three winters supports the radar-based evidence for winter lake drainage events and also provides estimates of lake drainage volumes, which range between 0.000046 ± 0.000017 and 0.0200 ± 0.002817 km3. For three of the events, optical imagery allows repeat photoclinometry (shape from shading) calculations to be made showing mean vertical collapse of the lake surfaces ranging between 1.21 ± 1.61 and 7.25 ± 1.61 m and drainage volumes of 0.002 ± 0.002968 to 0.044 ± 0.009858 km3. For one of these three, time-stamped ArcticDEM strips allow for DEM differencing, which demonstrates a mean collapse depth of 2.17 ± 0.28 m across the lake area. The findings show that lake drainage can occur in the winter in the absence of active surface melt and notable ice flow acceleration, which may have important implications for subglacial hydrology and biogeochemical processes.


2021 ◽  
Author(s):  
Alexander Robinson ◽  
Daniel Goldberg ◽  
William H. Lipscomb

Abstract. In the last decade, the number of ice-sheet models has increased substantially, in line with the growth of the glaciological community. These models use solvers based on different approximations of ice dynamics. In particular, several depth-integrated dynamics approximations have emerged as fast solvers capable of resolving the relevant physics of ice sheets at the continen- tal scale. However, the numerical stability of these schemes has not been studied systematically to evaluate their effectiveness in practice. Here we focus on three such solvers, the so-called Hybrid, L1L2-SIA and DIVA solvers, as well as the well-known SIA and SSA solvers as boundary cases. We investigate the numerical stability of these solvers as a function of grid resolution and the state of the ice sheet. Under simplified conditions with constant viscosity, the maximum stable timestep of the Hybrid solver, like the SIA solver, has a quadratic dependence on grid resolution. In contrast, the DIVA solver has a maximum timestep that is independent of resolution, like the SSA solver. Analysis indicates that the L1L2-SIA solver should behave similarly, but in practice, the complexity of its implementation can make it difficult to maintain stability. In realistic simulations of the Greenland ice sheet with a non-linear rheology, the DIVA and SSA solvers maintain superior numerical stability, while the SIA, Hybrid and L1L2-SIA solvers show markedly poorer performance. At a grid resolution of ∆x = 4 km, the DIVA solver runs approximately 15 times faster than the Hybrid and L1L2-SIA solvers. Our analysis shows that as resolution increases, the ice-dynamics solver can act as a bottleneck to model performance. The DIVA solver emerges as a clear outlier in terms of both model performance and its representation of the ice-flow physics itself.


1968 ◽  
Vol 7 (49) ◽  
pp. 59-76 ◽  
Author(s):  
Steven J. Mock

AbstractData from stake measurements, marker boards and pits along a 136 km trail crossing the Thule peninsula sector of the Greenland ice sheet have been used to determine both the regional and local distribution of snow accumulation, On a regional scale trend surfaces of mean annual accumulation can be adequately predicted from a model using distance from moisture source and elevation as independent parameters. A series of step- or wave-like features break the smooth profile of the ice. sheet and cause profound changes in accumulation rates on a local scale. The accumulation pattern over these features can be predicted from surface slope and departure from regional elevation. Profiles of’ surface and subsurface topography indicate a direct relationship between subsurface hills and step-like features, but cannot be quantitatively accounted for by existing ice-flow theory. Detailed accumulation studies in conjunction with a program of spirit leveling in the vicinity of Camp Century has revealed the development a shallow valley-like feature. Within this feature accumulation rates have increased indicating that it is the result of flow phenomena.


1968 ◽  
Vol 7 (49) ◽  
pp. 59-76 ◽  
Author(s):  
Steven J. Mock

Abstract Data from stake measurements, marker boards and pits along a 136 km trail crossing the Thule peninsula sector of the Greenland ice sheet have been used to determine both the regional and local distribution of snow accumulation, On a regional scale trend surfaces of mean annual accumulation can be adequately predicted from a model using distance from moisture source and elevation as independent parameters. A series of step- or wave-like features break the smooth profile of the ice. sheet and cause profound changes in accumulation rates on a local scale. The accumulation pattern over these features can be predicted from surface slope and departure from regional elevation. Profiles of’ surface and subsurface topography indicate a direct relationship between subsurface hills and step-like features, but cannot be quantitatively accounted for by existing ice-flow theory. Detailed accumulation studies in conjunction with a program of spirit leveling in the vicinity of Camp Century has revealed the development a shallow valley-like feature. Within this feature accumulation rates have increased indicating that it is the result of flow phenomena.


2020 ◽  
Vol 61 (81) ◽  
pp. 143-153 ◽  
Author(s):  
Steven Franke ◽  
Daniela Jansen ◽  
Tobias Binder ◽  
Nils Dörr ◽  
Veit Helm ◽  
...  

AbstractThe Northeast Greenland Ice Stream (NEGIS) is an important dynamic component for the total mass balance of the Greenland ice sheet, as it reaches up to the central divide and drains 12% of the ice sheet. The geometric boundary conditions and in particular the nature of the subglacial bed of the NEGIS are essential to understand its ice flow dynamics. We present a record of more than 8000 km of radar survey lines of multi-channel, ultra-wideband radio echo sounding data covering an area of 24 000 km2, centered on the drill site for the East Greenland Ice-core Project (EGRIP), in the upper part of the NEGIS catchment. Our data yield a new detailed model of ice-thickness distribution and basal topography in the region. The enhanced resolution of our bed topography model shows features which we interpret to be caused by erosional activity, potentially over several glacial–interglacial cycles. Off-nadir reflections from the ice–bed interface in the center of the ice stream indicate a streamlined bed with elongated subglacial landforms. Our new bed topography model will help to improve the basal boundary conditions of NEGIS prescribed for ice flow models and thus foster an improved understanding of the ice-dynamic setting.


2019 ◽  
Vol 12 (6) ◽  
pp. 2481-2499 ◽  
Author(s):  
Sébastien Le clec'h ◽  
Aurélien Quiquet ◽  
Sylvie Charbit ◽  
Christophe Dumas ◽  
Masa Kageyama ◽  
...  

Abstract. Providing reliable projections of the ice sheet contribution to future sea-level rise has become one of the main challenges of the ice sheet modelling community. To increase confidence in future projections, a good knowledge of the present-day state of ice flow dynamics, which is critically dependent on basal conditions, is strongly needed. The main difficulty is tied to the scarcity of observations at the ice–bed interface at the scale of the whole ice sheet, resulting in poorly constrained parameterisations in ice sheet models. To circumvent this drawback, inverse modelling approaches can be developed to infer initial conditions for ice sheet models that best reproduce available data. Most often such approaches allow for a good representation of the mean present-day state of the ice sheet but are accompanied with unphysical trends. Here, we present an initialisation method for the Greenland ice sheet using the thermo-mechanical hybrid GRISLI (GRenoble Ice Shelf and Land Ice) ice sheet model. Our approach is based on the adjustment of the basal drag coefficient that relates the sliding velocities at the ice–bed interface to basal shear stress in unfrozen bed areas. This method relies on an iterative process in which the basal drag is periodically adjusted in such a way that the simulated ice thickness matches the observed one. The quality of the method is assessed by computing the root mean square errors in ice thickness changes. Because the method is based on an adjustment of the sliding velocities only, the results are discussed in terms of varying ice flow enhancement factors that control the deformation rates. We show that this factor has a strong impact on the minimisation of ice thickness errors and has to be chosen as a function of the internal thermal state of the ice sheet (e.g. a low enhancement factor for a warm ice sheet). While the method performance slightly increases with the duration of the minimisation procedure, an ice thickness root mean square error (RMSE) of 50.3 m is obtained in only 1320 model years. This highlights a rapid convergence and demonstrates that the method can be used for computationally expensive ice sheet models.


Sign in / Sign up

Export Citation Format

Share Document