scholarly journals Bed topography and subglacial landforms in the onset region of the Northeast Greenland Ice Stream

2020 ◽  
Vol 61 (81) ◽  
pp. 143-153 ◽  
Author(s):  
Steven Franke ◽  
Daniela Jansen ◽  
Tobias Binder ◽  
Nils Dörr ◽  
Veit Helm ◽  
...  

AbstractThe Northeast Greenland Ice Stream (NEGIS) is an important dynamic component for the total mass balance of the Greenland ice sheet, as it reaches up to the central divide and drains 12% of the ice sheet. The geometric boundary conditions and in particular the nature of the subglacial bed of the NEGIS are essential to understand its ice flow dynamics. We present a record of more than 8000 km of radar survey lines of multi-channel, ultra-wideband radio echo sounding data covering an area of 24 000 km2, centered on the drill site for the East Greenland Ice-core Project (EGRIP), in the upper part of the NEGIS catchment. Our data yield a new detailed model of ice-thickness distribution and basal topography in the region. The enhanced resolution of our bed topography model shows features which we interpret to be caused by erosional activity, potentially over several glacial–interglacial cycles. Off-nadir reflections from the ice–bed interface in the center of the ice stream indicate a streamlined bed with elongated subglacial landforms. Our new bed topography model will help to improve the basal boundary conditions of NEGIS prescribed for ice flow models and thus foster an improved understanding of the ice-dynamic setting.

2003 ◽  
Vol 36 ◽  
pp. 66-72 ◽  
Author(s):  
Martin Truffer ◽  
Keith A. Echelmeyer

AbstractFast-flowing ice streams and outlet glaciers provide the major avenues for ice flow from past and present ice sheets. These ice streams move faster than the surrounding ice sheet by a factor of 100 or more. Several mechanisms for fast ice-stream flow have been identified, leading to a spectrum of different ice-stream types. In this paper we discuss the two end members of this spectrum, which we term the “ice-stream” type (represented by the Siple Coast ice streams in West Antarctica) and the “isbræ” type (represented by Jakobshavn Isbræ in Greenland). The typical ice stream is wide, relatively shallow (∼1000 m), has a low surface slope and driving stress (∼10 kPa), and ice-stream location is not strongly controlled by bed topography. Fast flow is possible because the ice stream has a slippery bed, possibly underlain by weak, actively deforming sediments. The marginal shear zones are narrow and support most of the driving stress, and the ice deforms almost exclusively by transverse shear. The margins seem to be inherently unstable; they migrate, and there are plausible mechanisms for such ice streams to shut down. The isbræ type of ice stream is characterized by very high driving stresses, often exceeding 200 kPa. They flow through deep bedrock channels that are significantly deeper than the surrounding ice, and have steep surface slopes. Ice deformation includes vertical as well as lateral shear, and basal motion need not contribute significantly to the overall motion. The marginal shear zone stend to be wide relative to the isbræ width, and the location of isbræ and its margins is strongly controlled by bedrock topography. They are stable features, and can only shut down if the high ice flux cannot be supplied from the adjacent ice sheet. Isbræs occur in Greenland and East Antarctica, and possibly parts of Pine Island and Thwaites Glaciers, West Antarctica. In this paper, we compare and contrast the two types of ice streams, addressing questions such as ice deformation, basal motion, subglacial hydrology, seasonality of ice flow, and stability of the ice streams.


2021 ◽  
Author(s):  
Tamara Annina Gerber ◽  
Christine Hvidberg ◽  
Aslak Grinsted ◽  
Daniela Jansen ◽  
Steven Franke ◽  
...  

<p>The North East Greenland ice-stream (NEGIS) is the largest active ice-stream on the Greenland ice-sheet and is a crucial contributor to the ice-sheet mass balance. To investigate the ice-stream dynamics and to gain information about the past climate, a deep ice-core is drilled in the upstream part of the NEGIS, termed the East Greenland ice-core project (EastGRIP). Upstream flow effects introduce non-climatic bias in ice-cores and are particularly strong at EastGRIP due to high ice-flow velocities and the location in an ice-stream on the eastern flank of the Greenland ice-sheet. Understanding and ultimately correcting for such effects requires information on the source area and the local atmospheric conditions at the time of ice deposition. We use a two-dimensional Dansgaard-Johnsen model to simulate ice-flow along three approximated flow-lines between the summit of the ice-sheet and EastGRIP. Model parameters are determined using a Monte Carlo inversion by minimizing the misfit between modeled isochrones and isochrones observed in radio-echo-sounding images. We calculate backward-in-time particle trajectories to determine the source area of ice found in the EastGRIP core today and present estimates of surface elevation and past accumulation-rates at the deposition site. The thinning function and accumulated strain obtained from the modeled velocity field provide useful information on the deformation history in the EastGRIP ice. Our results indicate that increased accumulation in the upstream area is predominantly responsible for the constant annual layer thickness observed in the upper part of the ice column at EastGRIP. Inverted model parameters suggest that the imprint of basal melting and sliding is present in large parts along the flow profiles and that most internal ice deformation happens close to the bedrock. The results of this study can act as a basis for applying upstream corrections to a variety of ice-core measurements, and the model parameters can be useful constraints for more sophisticated modeling approaches in the future. </p>


2013 ◽  
Vol 7 (2) ◽  
pp. 1101-1118 ◽  
Author(s):  
I. Joughin ◽  
S. B. Das ◽  
G. E. Flowers ◽  
M. D. Behn ◽  
R. B. Alley ◽  
...  

Abstract. Supraglacial lakes play an important role in establishing hydrological connections that allow lubricating seasonal melt water to reach the base of the Greenland Ice Sheet. Here we use new surface velocity observations to examine the influence of supraglacial lake drainages and surface melt rate on ice flow. We find large, spatially extensive speedups concurrent with times of lake drainage, showing that lakes play a key role in modulating regional ice flow. While surface meltwater is supplied to the bed via a geographically sparse network of moulins, the observed ice-flow enhancement suggests that this meltwater spreads widely over the ice-sheet bed. We also find that the complex spatial pattern of speedup is strongly determined by the combined influence of bed and surface topography on subglacial water flow. Thus, modeling of ice-sheet basal hydrology likely will require knowledge of bed topography resolved at scales (sub-kilometer) far finer than existing data (several km).


2018 ◽  
Vol 12 (10) ◽  
pp. 3383-3407 ◽  
Author(s):  
Josh Crozier ◽  
Leif Karlstrom ◽  
Kang Yang

Abstract. Ice surface topography controls the routing of surface meltwater generated in the ablation zones of glaciers and ice sheets. Meltwater routing is a direct source of ice mass loss as well as a primary influence on subglacial hydrology and basal sliding of the ice sheet. Although the processes that determine ice sheet topography at the largest scales are known, controls on the topographic features that influence meltwater routing at supraglacial internally drained catchment (IDC) scales (<10s of km) are less well constrained. Here we examine the effects of two processes on ice sheet surface topography: transfer of bed topography to the surface of flowing ice and thermal–fluvial erosion by supraglacial meltwater streams. We implement 2-D basal transfer functions in seven study regions of the western Greenland Ice Sheet ablation zone using recent data sets for bed elevation, ice surface elevation, and ice surface velocities. We find that ∼1–10 km scale ice surface features can be explained well by bed topography transfer in regions with different multiyear-averaged ice flow conditions. We use flow-routing algorithms to extract supraglacial stream networks from 2 to 5 m resolution digital elevation models and compare these with synthetic flow networks calculated on ice surfaces predicted by bed topography transfer. Multiple geomorphological metrics calculated for these networks suggest that bed topography can explain general ∼1–10 km supraglacial meltwater routing and that thermal–fluvial erosion thus has a lesser role in shaping ice surface topography on these scales. We then use bed topography transfer functions and flow routing to conduct a parameter study predicting how supraglacial IDC configurations and subglacial hydraulic potential would change under varying multiyear-averaged ice flow and basal sliding regimes. Predicted changes to subglacial hydraulic flow pathways directly caused by changing ice surface topography are subtle, but temporal changes in basal sliding or ice thickness have potentially significant influences on IDC spatial distribution. We suggest that changes to IDC size and number density could affect subglacial hydrology primarily by dispersing the englacial–subglacial input of surface meltwater.


2013 ◽  
Vol 7 (4) ◽  
pp. 1185-1192 ◽  
Author(s):  
I. Joughin ◽  
S. B. Das ◽  
G. E. Flowers ◽  
M. D. Behn ◽  
R. B. Alley ◽  
...  

Abstract. Supraglacial lakes play an important role in establishing hydrological connections that allow lubricating seasonal meltwater to reach the base of the Greenland Ice Sheet. Here we use new surface velocity observations to examine the influence of supraglacial lake drainages and surface melt rate on ice flow. We find large, spatially extensive speedups concurrent with times of lake drainage, showing that lakes play a key role in modulating regional ice flow. While surface meltwater is supplied to the bed via a geographically sparse network of moulins, the observed ice-flow enhancement suggests that this meltwater spreads widely over the ice-sheet bed. We also find that the complex spatial pattern of speedup is strongly determined by the combined influence of bed and surface topography on subglacial water flow. Thus, modeling of ice-sheet basal hydrology likely will require knowledge of bed topography resolved at scales (sub-kilometer) far finer than existing data (several km).


2003 ◽  
Vol 37 ◽  
pp. 351-356 ◽  
Author(s):  
Jonathan L. Bamber ◽  
Duncan J. Baldwin ◽  
S. Prasad Gogineni

AbstractA new digital elevation model of the surface of the Greenland ice sheet and surrounding rock outcrops has been produced from a comprehensive suite of satellite and airborne remote-sensing and cartographic datasets. The surface model has been regridded to a resolution of 5 km, and combined with a new ice-thickness grid derived from ice-penetrating radar data collected in the 1970s and 1990s. A further dataset, the International Bathymetric Chart of the Arctic Ocean, was used to extend the bed elevations to include the continental shelf. The new bed topography was compared with a previous version used for ice-sheet modelling. Near the margins of the ice sheet and, in particular, in the vicinity of small-scale features associated with outlet glaciers and rapid ice motion, significant differences were noted. This was highlighted by a detailed comparison of the bed topography around the northeast Greenland ice stream.


1999 ◽  
Vol 28 ◽  
pp. 83-89 ◽  
Author(s):  
A. J. Payne ◽  
D.J. Baldwin

AbstractThis work attempts to explain the fan-like landform assemblages observed in satellite images of the area covered by the former Scandinavian ice sheet (SIS). These assemblages have been interpreted as evidence of large ice streams within the SIS. If this interpretation is correct, then it calls into doubt current theories on the formation of ice streams. These theories regard soft sediment and topographic troughs as being the key determinants of ice-stream location. Neither can be used to explain the existence of ice streams on the flat, hard-rock area of the Baltic Shield. Initial results from a three-dimensional, thermomechanical ice-sheet model indicate that interactions between ice flow, form and temperature can create patterns similar to those mentioned above. The model uses a realistic, 20 km resolution gridded topography and a simple parameterization of accumulation and ablation. It produces patterns of maximum ice-sheet extent, which are similar to those reconstructed from the area’s glacial geomorphology. Flow in the maximum, equilibrium ice sheet is dominated by wedges of warm, low-viscosity, fast-flowing ice. These are separated by areas of cold, slow-flowing ice. This patterning appears to develop spontaneously as the modelled ice sheet grows.


2014 ◽  
Vol 10 (5) ◽  
pp. 1817-1836 ◽  
Author(s):  
F. A. Ziemen ◽  
C. B. Rodehacke ◽  
U. Mikolajewicz

Abstract. In the standard Paleoclimate Modelling Intercomparison Project (PMIP) experiments, the Last Glacial Maximum (LGM) is modeled in quasi-equilibrium with atmosphere–ocean–vegetation general circulation models (AOVGCMs) with prescribed ice sheets. This can lead to inconsistencies between the modeled climate and ice sheets. One way to avoid this problem would be to model the ice sheets explicitly. Here, we present the first results from coupled ice sheet–climate simulations for the pre-industrial times and the LGM. Our setup consists of the AOVGCM ECHAM5/MPIOM/LPJ bidirectionally coupled with the Parallel Ice Sheet Model (PISM) covering the Northern Hemisphere. The results of the pre-industrial and LGM simulations agree reasonably well with reconstructions and observations. This shows that the model system adequately represents large, non-linear climate perturbations. A large part of the drainage of the ice sheets occurs in ice streams. Most modeled ice stream systems show recurring surges as internal oscillations. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr. This is in agreement with basic expectations for Heinrich events. Under LGM boundary conditions, different ice sheet configurations imply different locations of deep water formation.


2018 ◽  
Vol 12 (10) ◽  
pp. 3097-3121 ◽  
Author(s):  
Reinhard Calov ◽  
Sebastian Beyer ◽  
Ralf Greve ◽  
Johanna Beckmann ◽  
Matteo Willeit ◽  
...  

Abstract. We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961–1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961–1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation–surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation–surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.


Sign in / Sign up

Export Citation Format

Share Document