scholarly journals Relating eddy correlation sensible heat flux to horizontal sensor separation in the unstable atmospheric surface layer

1994 ◽  
Vol 99 (D9) ◽  
pp. 18545 ◽  
Author(s):  
Xuhui Lee ◽  
T. Andrew Black
2005 ◽  
Vol 9 (6) ◽  
pp. 607-613 ◽  
Author(s):  
J. Roberts ◽  
P. Rosier ◽  
D. M. Smith

Abstract. The impact on recharge to the Chalk aquifer of substitution of broadleaved woodland for pasture is a matter of concern in the UK. Hence, measurements of energy balance components were made above beech woodland and above pasture, both growing on shallow soils over chalk in Hampshire. Latent heat flux (evaporation) was calculated as the residual from these measurements of energy balances in which sensible heat flux was measured with an eddy correlation instrument that determined fast response vertical wind speeds and associated temperature changes. Assessment of wind turbulence statistics confirmed that the eddy correlation device performed satisfactorily in both wet and dry conditions. There was excellent agreement between forest transpiration measurements made by eddy correlation and stand level tree transpiration measured with sap flow devices. Over the period of the measurements, from March 1999 to late summer 2000, changes in soil water content were small and grassland evaporation and transpiration estimated from energy balance-eddy flux measurements were in excellent agreement with Penman estimates of potential evaporation. Over the 18-month measurement period, the cumulative difference between broadleaved woodland and grassland was small but evaporation from the grassland was 3% higher than that from the woodland. In the springs of 1999 and 2000, evaporation from the grassland was greater than that from the woodland. However, following leaf emergence in the woodland, the difference in cumulative evaporation diminished until the following spring.


2006 ◽  
Vol 7 (4) ◽  
pp. 678-686 ◽  
Author(s):  
Zuohao Cao ◽  
Jianmin Ma ◽  
Wayne R. Rouse

Abstract In this study, the authors have performed the variational computations for surface sensible heat fluxes over a large northern lake using observed wind, temperature gradient, and moisture gradient. In contrast with the conventional (Monin–Obukhov similarity theory) MOST-based flux-gradient method, the variational approach sufficiently utilizes observational meteorological conditions over the lake, where the conventional flux-gradient method performs poorly. Verifications using direct eddy-correlation measurements over Great Slave Lake, the fifth largest lake in North America in terms of surface area, during the open water period of 1999 demonstrate that the variational method yields good agreements between the computed and the measured sensible heat fluxes. It is also demonstrated that the variational method is more accurate than the flux-gradient method in computations of sensible heat flux across the air–water interface.


2009 ◽  
Vol 2 (3) ◽  
pp. 1383-1417 ◽  
Author(s):  
P. A. Solignac ◽  
A. Brut ◽  
J.-L. Selves ◽  
J.-P. Béteille ◽  
J.-P. Gastellu-Etchegorry ◽  
...  

Abstract. The use of scintillometers to determine sensible heat fluxes is now common in studies of land-atmosphere interactions. The main interest in these instruments is due to their ability to quantify energy distributions at the landscape scale, as they can calculate sensible heat flux values over long distances, in contrast to Eddy Correlation systems. However, scintillometer data do not provide a direct measure of sensible heat flux, but require additional data, such as the Bowen ratio (β), to provide flux values. The Bowen ratio can either be measured using Eddy Correlation systems or derived from the energy balance closure. In this work, specific requirements for estimating energy fluxes using a scintillometer were analyzed, as well as the accuracy of two flux calculation methods. We first focused on the classical method (used in standard software). We analysed the impact of the Bowen ratio according to both time averaging and ratio values; for instance, an averaged Bowen ratio (β) of less than 1 proved to be a significant source of measurement uncertainty. An alternative method, called the "β-closure method", for which the Bowen ratio measurement is not necessary, was also tested. In this case, it was observed that even for low β values, flux uncertainties were reduced and scintillometer data were well correlated with the Eddy Correlation results.


2018 ◽  
Author(s):  
Yue Peng ◽  
Hong Wang ◽  
Yubin Li ◽  
Changwei Liu ◽  
Tianliang Zhao ◽  
...  

Abstract. The turbulent flux parameterization schemes in surface layer are crucial for air pollution modeling. The pollutants prediction by atmosphere chemical model exist obvious deficiencies, which may be closely related to the uncertainties of the momentum and sensible heat fluxes calculation in the surface layer. In this study, a new surface layer scheme (Li) and a classic scheme (MM5) were compared and evaluated based on the observed momentum and sensible heat fluxes in east China during a severe haze episode in winter. The results showed that it is necessary to distinguish the thermal roughness length z0h from the aerodynamic roughness length z0m, and ignoring the difference between the two led to large errors of the momentum and sensible heat fluxes in MM5. The error of calculated sensible heat flux was reduced by 54 % after discriminating z0h from z0m in MM5. Besides, the algorithm itself of Li scheme performed generally better than MM5 in winter in east China and the momentum flux bias of the Li scheme was lower about 12%, sensible heat flux bias about 5 % than those of MM5 scheme. Most of all, the Li scheme showed a significant advantage over MM5 for the transition stage from unstable to stable atmosphere corresponding to the PM2.5 accumulation. The momentum flux bias of Li was lower about 38 %, sensible heat flux bias about 43 % than those of MM5 during the PM2.5 increasing stage. This study result indicates the ability of Li scheme for more accurate describing the regional atmosphere stratification, and suggests the potential improving possibilities of severe haze prediction in east China by online coupling it into the atmosphere chemical model.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 363 ◽  
Author(s):  
Min-Seong Kim ◽  
Byung Hyuk Kwon

In this work, sensible heat flux estimated using a bulk transfer method was validated with a three-dimensional ultrasonic anemometer or surface layer scintillometer at various sites. Results indicate that it remains challenging to obtain temperature and wind speed at an appropriate reference height. To overcome this, alternative observations using an unmanned aerial vehicle (UAV) were considered. UAV-based wind speed and sensible heat flux were indirectly estimated and atmospheric boundary layer (ABL) height was then derived using the sensible heat flux data. UAV-observed air temperature was measured by attaching a temperature sensor 40 cm above the rotary-wing of the UAV, and UAV-based wind speed was estimated using attitude data (pitch, roll, and yaw angles) recorded using the UAV’s inertial measurement unit. UAV-based wind speed was close to the automatic weather system-observed wind speed, within an error range of approximately 10%. UAV-based sensible heat flux estimated from the bulk transfer method corresponded with sensible heat flux determined using the eddy correlation method, within an error of approximately 20%. A linear relationship was observed between the normalized UAV-based sensible heat flux and radiosonde-based normalized ABL height.


Sign in / Sign up

Export Citation Format

Share Document