Determination of aerosol optical depth and land surface directional reflectances using multiangle imagery

1997 ◽  
Vol 102 (D14) ◽  
pp. 17015-17022 ◽  
Author(s):  
John V. Martonchik
2020 ◽  
Vol 13 (11) ◽  
pp. 5955-5975
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multiband algorithm similar to those of polar-orbiting satellites' sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to limitations in the land surface reflectance relationships between the 0.47 µm band and the 2.2 µm band and between the 0.64 µm band and 2.2 µm band used in the ABI AOD retrieval algorithm, which vary with the Sun–satellite geometry and NDVI (normalized difference vegetation index). To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30 d period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period 6 August to 31 December 2018 are used to evaluate the bias correction algorithm. After bias correction, the correlation between the top 2 quality ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root-mean-square error (RMSE) improves from 0.09 to 0.05. These results for the bias-corrected top 2 qualities ABI AOD are comparable to those of the corrected high-quality ABI AOD. By using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the areal coverage of ABI AOD is increased by about 100 % without loss of data accuracy.


2010 ◽  
Vol 3 (5) ◽  
pp. 1333-1349 ◽  
Author(s):  
E. Kassianov ◽  
M. Ovchinnikov ◽  
L. K. Berg ◽  
S. A. McFarlane ◽  
C. Flynn ◽  
...  

Abstract. A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on 12 June 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm, 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15–30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount.


2006 ◽  
Vol 111 (D17) ◽  
Author(s):  
V. Estellés ◽  
M. P. Utrillas ◽  
J. A. Martínez-Lozano ◽  
A. Alcántara ◽  
L. Alados-Arboledas ◽  
...  

2010 ◽  
Vol 3 (2) ◽  
pp. 1889-1932
Author(s):  
E. Kassianov ◽  
M. Ovchinnikov ◽  
L. K. Berg ◽  
S. A. McFarlane ◽  
C. Flynn ◽  
...  

Abstract. A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on 12 June 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm and 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15–30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount.


Author(s):  
M. Mehta

Aerosol optical depth retrieval over land surface using remote sensing employs the use of radiative transfer simulations and/or simultaneous measurements of atmospheric parameters at the time of satellite pass. Also, an accurate estimate of land surface parameters is also required in order to separate the atmospheric component from the land surface reflectance reaching at-sensor. In addition to empirical and semi-empirical approaches, amongst the most widely used methods to retrieve the aerosol properties from satellite measurements are radiative transfer codes used in either forward or inverse modes. As most of them are computationally complex, henceforth, efforts are made to formulate approximate models. In this study, we have tried to estimate aerosol optical depth using one such established physically based model, namely, SMART (Simple Model for Atmospheric Radiative Transfer) code in multiple scattering approximation for aerosols over first band (0.52–0.59 μm) of RESOURCESAT-AWiFS sensor. The aim of the analysis was to find out an approach to decouple aerosol effects from Top of atmosphere signals recorded by AWiFS sensor using multiple scattering approximations for aerosols. The model is first calibrated for aerosol asymmetry parameter for one dataset each of summer and winter seasons respectively and subsequently validated for 4 different datasets (2 summer and 2 winter) against the MODIS atmosphere product for aerosol optical depth. The results show that the difference between simulated vs. MODIS AOD fall within MODIS expected errors for the aerosol product.


2020 ◽  
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multi-band algorithm similar to those of polar-orbiting satellites’ sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). Therefore, ABI AOD is expected to have accuracy and precision comparable to MODIS AOD and VIIRS AOD. However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to errors in the land surface reflectance relationship between the bands used in the ABI AOD retrieval algorithm, which vary with respect to the Sun-satellite geometry. To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30-day period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period August 6 to December 31, 2018 are used to validate the bias correction algorithm. For the top 2 qualities ABI AOD, after bias correction, the correlation between ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root mean square error (RMSE) improves from 0.09 to 0.05. These results for the bias corrected top 2 qualities ABI AOD are comparable to those of the uncorrected high-quality ABI AOD. Thus, by using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the area coverage of ABI AOD is substantially increased without loss of data accuracy.


2017 ◽  
Vol 195 ◽  
pp. 130-141 ◽  
Author(s):  
Shuaiyi Shi ◽  
Tianhai Cheng ◽  
Xingfa Gu ◽  
Hao Chen ◽  
Hong Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document