scholarly journals Dike orientations, fault-block rotations, and the construction of slow spreading oceanic crust at 22°40′N on the Mid-Atlantic Ridge

1998 ◽  
Vol 103 (B1) ◽  
pp. 663-676 ◽  
Author(s):  
Róisín M. Lawrence ◽  
Jeffrey A. Karson ◽  
Stephen D. Hurst
2019 ◽  
Vol 489 (5) ◽  
pp. 483-489
Author(s):  
N. S. Bortnikov ◽  
S. А. Silantiev ◽  
F. Bea ◽  
P. Montero ◽  
T. F. Zinger ◽  
...  

U-Pb age, oxygen and hafnium isotopic ratios in zircon from rocks of ocean core complexes at Mid-Atlantic Ridge have been studied using SHRIMP and MC-LA-ICP-MS techniques. U-Pb dating revealed four group of zircons: 1) 0,6-1,7 Ma, 2) 6,7-11,2 Ma, 3) 12,9-17,6 Ma, 4) 200 to 2044 Ma. The 18O values range from 4,74 to 7,2 and are distinct for zircon grains of different ages. Hafnium isotopic ratio for zircon aged from 0,6 to 17,6 Ma corresponds or is close to that of MORB from Central Atlantic. The oxygen and hafnium isotopic compositions of zircon elder than 280 Ma correspond to those of the sialic continental crust. A hypothesis of involvement of the ancient pre-Atlantic sialic (280 млн лет) and old Atlantic (7-17 Ma) crusts in a generation of the contemporary (young) oceanic crust during formation of the slow-spreading Mid-Atlantic Ridge has been proposed.


2010 ◽  
Vol 278 (3-4) ◽  
pp. 186-200 ◽  
Author(s):  
Vesselin M. Dekov ◽  
Sven Petersen ◽  
C.-Dieter Garbe-Schönberg ◽  
George D. Kamenov ◽  
Mirjam Perner ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Boris Marcaillou ◽  
Frauke Klingelhoefer ◽  
Muriel Laurencin ◽  
Jean-Frédéric Lebrun ◽  
Mireille Laigle ◽  
...  

AbstractOceanic crust formed at slow-spreading ridges is currently subducted in only a few places on Earth and the tectonic and seismogenic imprint of the slow-spreading process is poorly understood. Here we present seismic and bathymetric data from the Northeastern Lesser Antilles Subduction Zone where thick sediments enable seismic imaging to greater depths than in the ocean basins. This dataset highlights a pervasive tectonic fabric characterized by closely spaced sequences of convex-up Ridgeward-Dipping Reflectors, which extend down to about 15 km depth with a 15-to-40° angle. We interpret these reflectors as discrete shear planes formed during the early stages of exhumation of magma-poor mantle rocks at an inside corner of a Mid-Atlantic Ridge fracture zone. Closer to the trench, plate bending could have reactivated this tectonic fabric and enabled deep fluid circulation and serpentinization of the basement rocks. This weak serpentinized basement likely explains the very low interplate seismic activity associated with the Barbuda-Anegada margin segment above.


Geology ◽  
2000 ◽  
Vol 28 (2) ◽  
pp. 179-182 ◽  
Author(s):  
Simon Allerton ◽  
Javier Escartín ◽  
Roger C. Searle

1999 ◽  
Vol 104 (B5) ◽  
pp. 10421-10437 ◽  
Author(s):  
J. Escartín ◽  
P. A. Cowie ◽  
R. C. Searle ◽  
S. Allerton ◽  
N. C. Mitchell ◽  
...  

2020 ◽  
Author(s):  
Falko Vehling ◽  
Jörg Hasenclever ◽  
Lars Rüpke

<p>Submarine hydrothermal systems sustain unique ecosystems, affect global-scale biogeochemical ocean cycles, and mobilize metals from the oceanic crust to form volcanogenic massive sulfide deposits. Quantifying these processes requires linking seafloor observations to physico-chemical processes at depth and this is where numerical models of hydrothermal circulation can be particularly useful. One region where sufficient data is available to establish such a link is the East Pacific Rise (EPR) at 9°N, where vent fluid salinity and temperature have been repeatedly measured over a long time period. Here, large salinity and temperature changes of vents at the axial graben have been correlated with diking events and extrusive lava flows. Salinity changes imply the phase separation of seawater into a high-salinity brine and a low-salinity vapor phase. The intrusion of a new dike is likely to result in a characteristic salinity signal over several years: first the low salinity vapor phase rises and later the brine phase appears along with a decreasing vent temperature. These short-term salinity variations are super-imposed on the background salinity signal, which is modulated by phase separation phenomena on top of the axial magma lens. </p><p>From these variations, numerical models can help to infer sub-surface properties and processes such as permeability, background flow rates, and brine retention as well as mobilization – if the employed model can resolve the complexity of phase separation. We here present a novel numerical model for saltwater hydrothermal systems, which uses the Finite Volume Method on unstructured meshes and the Newton-Raphson Method for solving the coupled equations. We use this new 2-D model to investigate a setup that mimics hydrothermal convection on top of the axial magma lens, which is then perturbed by a dike intrusion. In a comprehensive suite of model runs, we have identified the key controls on the time evolution of vent fluid salinity following the diking event. Based on these insights, we can reproduce time-series data from the EPR at 9°N and infer likely ranges of rock properties for the oceanic crust layer 2B. </p><p>Our work shows how useful data integration into numerical hydrothermal models is. Unfortunately, data collection like mapping of magmatic events, continuous measurements of hydrothermal vent fluids or crustal drilling are very expensive and technically challenging. Here global and transdisciplinary collaboration would be very useful for achieving data with maximal benefit for all disciplines. Compared to the EPR the Mid-Atlantic Ridge shows a higher geological complexity, due to its lower spreading rate, and a higher diversity of vent fluid chemistry, but less continuous data is available, which hampers research using numerical models here for now. Therefore, numerical case studies at EPR serve as important validity checks for our numerical model and indicate where it has to be enhanced for quantifying processes related to hydrothermal systems at Mid-Atlantic Ridge.     </p>


Sign in / Sign up

Export Citation Format

Share Document