Deep ocean circulation, preformed nutrients, and atmospheric carbon dioxide: Theories and evidence from oceanic sediments

Author(s):  
Edward A. Boyle

Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Aaron Sidder

A 400,000-year calcium carbonate record from the ocean floor sheds light on deep-ocean circulation and on mechanisms driving climate patterns and atmospheric carbon dioxide concentrations.



2005 ◽  
Vol 18 (13) ◽  
pp. 2222-2246 ◽  
Author(s):  
Robert J. Oglesby ◽  
Monica Y. Stephens ◽  
Barry Saltzman

Abstract A coupled mixed layer–atmospheric general circulation model has been used to evaluate the impact of ocean thermocline temperatures (and by proxy those of the deep ocean) on the surface climate of the earth. Particular attention has been devoted to temperature regimes both warmer and cooler than at present. The mixed layer ocean model (MLOM) simulates vertical dynamics and thermodynamics in the upper ocean, including wind mixing and buoyancy effects, and has been coupled to the NCAR Community Climate Model (CCM3). Simulations were made with globally uniform thermocline warmings of +2°, +5°, and +10°C, as well as a globally uniform cooling of −5°C. A simulation was made with latitudinally varying changes in thermocline temperature such that the warming at mid- and high latitudes is much larger than at low latitudes. In all simulations, the response of surface temperature over both land and ocean was larger than that expected just as a result of the imposed thermocline temperature change, largely because of water vapor feedbacks. In this respect, the simulations were similar to those in which only changes in atmospheric carbon dioxide were imposed. In fact, when carbon dioxide was explicitly changed along with thermocline temperatures, the results were not much different than if only the thermocline temperatures were altered. Land versus ocean differences are explained largely by latent heat flux differences: the ocean is an infinite evaporative source, while land can be quite dry. The latitudinally varying case has a much larger response at mid- to high latitudes than at low latitudes; the high latitudes actually appear to effectively warm the low latitudes. Simulations exploring scenarios of glacial inception suggest that the deep ocean alone is not likely to be a key trigger but must operate in conjunction with other forcings, such as reduced carbon dioxide. Moist upland regions at mid- and high latitudes, and land regions adjacent to perennial sea ice, are the preferred locations for glacial inception in these runs. Finally, the model combination equilibrates very rapidly, meaning that a large number of simulations can be made for a fairly modest computational cost. A drawback to this is greatly reduced sensitivity to parameters such as atmospheric carbon dioxide, which requires a full response of the ocean. Thus, this approach can be considered intermediate between fixing, or prescribing, sea surface temperatures and a fully coupled modeling approach.



It is known that past periods of high atmospheric carbon dioxide concentration are associated with poor carbonate preservation in the deep-ocean sedimentary record. Bottom water can become more aggressive towards carbonate sediments during such periods. To interpret the sedimentary record more exactly, and to predict future atmospheric carbon dioxide levels, it is necessary to know the rate of solution of carbonate for a given degree of bottom-water undersaturation. In parts of the Atlantic Ocean, turbidite sedimentation mechanisms have emplaced carbonate-rich material in contact with undersaturated bottom water. The time of the emplacement event can be determined from natural radionuclide distributions, and the degree of carbonate dissolution in this time can be measured. This provides a direct measurement of dissolution rate from a natural sediment surface at a known degree of undersaturation. The range of applicability of the method is explored with a mathematical model, and field data from a 5430 m depth Atlantic site are presented.



2013 ◽  
Vol 1 (1) ◽  
pp. 177-206
Author(s):  
S.-J. Kao ◽  
R. G. Hilton ◽  
K. Selvaraj ◽  
M. Dai ◽  
F. Zehetner ◽  
...  

Abstract. Geological sequestration of atmospheric carbon dioxide (CO2) can be achieved by the erosion of organic carbon (OC) from the terrestrial biosphere and its burial in long-lived marine sediments. Rivers on mountain islands of Oceania in the western Pacific have very high rates of OC export to the ocean, yet its preservation offshore remains poorly constrained. Here we use the OC content (Corg, %), radiocarbon (Δ14Corg) and stable isotope (δ13Corg) composition of sediments offshore Taiwan to assess the fate of terrestrial OC. We account for rock-derived fossil OC to assess the preservation of OC eroded from the terrestrial biosphere (non-fossil OC) during flood discharges (hyperpycnal river plumes) and when river inputs are dispersed more widely (hypopycnal). The Corg, Δ14Corg and δ13Corg of marine sediment traps and cores indicate that during flood discharges, terrestrial OC is transferred efficiently to the deep ocean and accumulates offshore with little evidence for terrestrial OC loss. In marine sediments fed by dispersive river inputs, the Corg, Δ14Corg and δ13Corg are consistent with mixing of marine OC and terrestrial OC and suggest that efficient preservation of terrestrial OC (> 70%) is also associated with hypopycnal delivery. Re-burial of fossil OC is pervasive. Our findings from Taiwan suggest that erosion and marine burial of terrestrial non-fossil OC may sequester > 8 TgC yr−1 across Oceania, a significant geological CO2 sink which requires better constraint. We postulate that mountain islands of Oceania provide strong link between tectonic uplift and the carbon cycle, one moderated by the climatic variability that controls terrestrial OC delivery to the ocean.



2016 ◽  
Vol 114 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Malte F. Jansen

Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.



2014 ◽  
Vol 2 (1) ◽  
pp. 127-139 ◽  
Author(s):  
S.-J. Kao ◽  
R. G. Hilton ◽  
K. Selvaraj ◽  
M. Dai ◽  
F. Zehetner ◽  
...  

Abstract. Geological sequestration of atmospheric carbon dioxide (CO2) can be achieved by the erosion of organic carbon (OC) from the terrestrial biosphere and its burial in long-lived marine sediments. Rivers on mountain islands of Oceania in the western Pacific have very high rates of OC export to the ocean, yet its preservation offshore remains poorly constrained. Here we use the OC content (Corg, %), radiocarbon (Δ 14Corg) and stable isotope (δ13Corg) composition of sediments offshore Taiwan to assess the fate of terrestrial OC, using surface, sub-surface and Holocene sediments. We account for rock-derived OC to assess the preservation of OC eroded from the terrestrial biosphere and the associated CO2 sink during flood discharges (hyperpycnal river plumes) and when river inputs are dispersed more widely (hypopycnal). The Corg, Δ14Corg and δ 13Corg of marine sediment traps and cores indicate that during flood discharges, terrestrial OC can be transferred efficiently down submarine canyons to the deep ocean and accumulates offshore with little evidence for terrestrial OC loss. In marine sediments fed by dispersive river inputs, the Corg, Δ14Corg and δ 13Corg are consistent with mixing of terrestrial OC with marine OC and suggest that efficient preservation of terrestrial OC (>70%) is also associated with hypopycnal delivery. Sub-surface and Holocene sediments indicate that this preservation is long-lived on millennial timescales. Re-burial of rock-derived OC is pervasive. Our findings from Taiwan suggest that erosion and offshore burial of OC from the terrestrial biosphere may sequester >8 TgC yr−1 across Oceania, a significant geological CO2 sink which requires better constraint. We postulate that mountain islands of Oceania provide a strong link between tectonic uplift and the carbon cycle, one moderated by the climatic variability which controls terrestrial OC delivery to the ocean.





Sign in / Sign up

Export Citation Format

Share Document