Free-Air Gravity Anomalies Caused by the Gravitational Attraction of Topographic, Bathymetric Features, and Their Isostatic Compensating Masses And Corresponding Geoid Undulations

Author(s):  
Lassi A. Kivioja ◽  
Albert D. M. Lewis
2020 ◽  
Vol 46 (2) ◽  
pp. 48-54
Author(s):  
Patroba Achola Odera

This study carries out an evaluation of the recent high-degree combined global gravity-field models (EGM2008, EIGEN-6C4, GECO and SGG-UGM-1) over Kenya. The evaluation is conducted using observed geoid undulations (18 data points, mainly in Nairobi area) and free-air gravity anomalies (8,690 data points, covering the whole country). All the four models are applied at full spherical harmonic degree expansion. The standard deviations of the differences between observed and GGMs implied geoid undulations at 18 GPS/levelling points over Nairobi area are ±11.62, ±11.48, ±12.51 and ±11.75 cm for EGM2008, EIGEN-6C4, GECO and SGG-UGM-1, respectively. On the other hand, standard deviations of the differences between observed and GGMs implied free-air gravity anomalies at 8,690 data points over Kenya are ±10.11, ±10.03, ±10.19 and ±10.00 mGal for EGM2008, EIGEN-6C4, GECO and SGG-UGM-1, respectively. These results indicate that the recent high-degree global gravity-field models generally perform at the same level over Kenya. However, EIGEN6C4 performs slightly better than EGM2008, GECO and SGG-UGM-1, considering the independent check provided by GPS/levelling data (admittedly over a small area). These results further indicate a good prospect for the development of a precise gravimetric geoid model over Kenya using EIGEN-6C4 by integrating local terrestrial gravity data in a removecompute-restore scheme.


Author(s):  
William Lowrie

‘Gravity and the figure of the Earth’ discusses the measurement of gravity and its variation at the Earth’s surface and with depth. Gravity is about 0.5 per cent stronger at the poles than at the equator and it first increases with depth until the core–mantle boundary and then sinks to zero at the Earth’s centre. Using satellites to carry out geodetic and gravimetric observations has revolutionized geodesy, creating a powerful geophysical tool for observing and measuring dynamic processes on the Earth. The various measurement techniques employed fall in two categories: precise location of a position on the Earth (such as GPS) and accurate determination of the geoid and gravitational field. Bouguer and free-air gravity anomalies and isostasy are explained.


1980 ◽  
Vol 34 (3) ◽  
pp. 251-264 ◽  
Author(s):  
Gerard Lachapelle ◽  
K. P. Schwarz

An evaluation of the empirical gravity anomaly covariance function using over 95 000 surface gravity anomalies in the North American Western Cordillera was carried out. A regression analysis of the data exhibits a strong and quasi-linear correlation of free air gravity anomalies with heights. This height correlation is removed from the free air anomalies prior to the numerical evaluation of the gravity anomaly covariance function. This covariance function agrees well with that evaluated previously by the authors for the remainder of Canada. A possible use for such a covariance function of ‘height independent’ gravity anomalies in mountainous areas is described. First, the height independent gravity anomaly at a point of known height is evaluated by least squares prediction using neighboring measured height independent gravity anomalies. Secondly, the part caused by the height correlation is calculated using linear regression parameters estimated previously and added to the predicted height independent gravity anomaly to obtain a predicted standard free air anomaly. This technique can be used to densify the coverage of free air anomalies for subsequent use in integral formulas of physical geodesy, e.g., those of Stokes and Vening Meinesz. This method requires that point topographic heights be given on a grid.


Eos ◽  
1987 ◽  
Vol 68 (2) ◽  
pp. 17 ◽  
Author(s):  
G. Balmino ◽  
B. Moynot ◽  
M. Sarrailh ◽  
N. Valès

Sign in / Sign up

Export Citation Format

Share Document