The effect of background plasma density on the growth of ordinary andZmode emissions in the auroral zone

1985 ◽  
Vol 90 (A7) ◽  
pp. 6641 ◽  
Author(s):  
N. Omidi ◽  
C. S. Wu
2015 ◽  
Vol 41 (3) ◽  
pp. 254-261 ◽  
Author(s):  
A. A. Chernyshov ◽  
A. A. Ilyasov ◽  
M. M. Mogilevskii ◽  
I. V. Golovchanskaya ◽  
B. V. Kozelov

2007 ◽  
Vol 47 (6) ◽  
pp. 739-749
Author(s):  
N. I. Izhovkina ◽  
I. S. Prutensky ◽  
S. A. Pulinets ◽  
Z. Klos ◽  
H. Rothkaehl

2017 ◽  
Vol 44 (15) ◽  
pp. 7628-7633 ◽  
Author(s):  
Zhigang Yuan ◽  
Xiongdong Yu ◽  
Shiyong Huang ◽  
Dedong Wang ◽  
Herbert O. Funsten

1971 ◽  
Vol 6 (2) ◽  
pp. 413-424 ◽  
Author(s):  
H. L. Berk ◽  
R. N. Sudan

A weak E layer in a non-uniform magnetic field will tend to precess as a rigid body in response to the radial focusing of external magnetic fields and fields due to wall currents. We study the interaction of this precessional mode with a background plasma, and we explicitly include dissipation mechanisms in the plasma, walls and external resistors. When the plasma background is treated in the MHD approximation, we find that the mode changes character from a precessional mode at low density to a compressional Alfvén wave at high density. For a very weak E layer, instability is found, even without dissipation, when a sufficiently high background plasma density is present. However, for moderate E-layer strengths, the modes are found to be stable, even with dissipation.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-7 ◽  
Author(s):  
XiongDong Yu ◽  
◽  
ZhiGang Yuan ◽  
ShiYong Huang ◽  
Fei Yao ◽  
...  

2018 ◽  
Vol 7 (4) ◽  
pp. 2044
Author(s):  
Ram Gopal ◽  
Pradip Kumar Jain ◽  
Pradip Kumar Jain

The dispersion relation of the FEL Amplifiers is sensitive to the linear tapered strong axial magnetic fields, electron cyclotron frequency and plasma frequency of electrons. For the synchronism of the pumped frequency, it should be closed to electron cyclotron frequency which is resonantly enhanced the wiggler wave number that produces the amplifier radiation for higher frequency from sub millimeter wave to optical ranges. The guiding of radiation signal into the waveguide and charge neutralization phenomenon, the beam density should be greater than the background plasma density with tapered strong axial magnetic field. It is quite considerable that radiation signal slowed down at much higher background plasma density comparable to the density of beams and enhanced the instability growth rate also. In Raman Regime operation, the growth rate decreases as increases with operation frequency of the amplifier, however, the growth rate is larger in this regime. It is noted that as increases with background plasma density, the beat wave frequency of the Ponderomotive waves is increases thus the mechanism of background plasma density can serve for tenability of the higher frequencies. The tapering of the strong guided magnetic field is a crucial role for enhancing the efficiency of the net transfer energy as well as reduction of interaction region along the axis. It is observed that, an efficiency of the transfer energy enhanced by while the reduction along the interaction region of about with the variation of tapering in a strong axial guided magnetic fields.  


2015 ◽  
Vol 81 (3) ◽  
Author(s):  
T. Mohsenpour ◽  
B. Maraghechi

The method of perturbation has been applied to derive a general dispersion relation for a free-electron laser (FEL) with background plasma and helical wiggler in the presence of an axial magnetic field. This dispersion relation is solved numerically to find unstable interactions among all of the wave modes. Numerical calculations show that new coupling between the left wave and positive-energy space-charge of electron beam are found when wiggler induced velocity is large. This coupling does not change with increasing the plasma density. The growth rate of FEL is changed with increasing the plasma density and the normalized axial magnetic field.


2021 ◽  
Vol 12 (1) ◽  
pp. 77-93
Author(s):  
Raymond A. Greenwald

Abstract. Part I of this history describes the motivations for developing radars in the high frequency (HF) band to study plasma density irregularities in the F region of the auroral zone and polar cap ionospheres. French and Swedish scientists were the first to use HF frequencies to study the Doppler velocities of HF radar backscatter from F-region plasma density irregularities over northern Sweden. These observations encouraged the author of this paper to pursue similar measurements over northeastern Alaska, and this eventually led to the construction of a large HF-phased-array radar at Goose Bay, Labrador, Canada. This radar utilized frequencies from 8–20 MHz and could be electronically steered over 16 beam directions, covering a 52∘ azimuth sector. Subsequently, similar radars were constructed at Schefferville, Quebec, and Halley Station, Antarctica. Observations with these radars showed that F-region backscatter often exhibited Doppler velocities that were significantly above and below the ion-acoustic velocity. This distinguished HF Doppler measurements from prior measurements of E-region irregularities that were obtained with radars operating at very high frequency (VHF) and ultra-high frequency (UHF). Results obtained with these early HF radars are also presented. They include comparisons of Doppler velocities observed with HF radars and incoherent scatter radars, comparisons of plasma convection patterns observed simultaneously in conjugate hemispheres, and the response of these patterns to changes in the interplanetary magnetic field, transient velocity enhancements in the dayside cusp, preferred frequencies for geomagnetic pulsations, and observations of medium-scale atmospheric gravity waves with HF radars.


2001 ◽  
Vol 106 (A9) ◽  
pp. 19023-19033 ◽  
Author(s):  
M. T. Johnson ◽  
J. R. Wygant ◽  
C. Cattell ◽  
F. S. Mozer ◽  
M. Temerin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document