Viscous phase in rocks and the low-velocity zone

1971 ◽  
Vol 76 (5) ◽  
pp. 1270-1277 ◽  
Author(s):  
Amos Nur
1970 ◽  
Vol 4 (1) ◽  
pp. 62-64 ◽  
Author(s):  
Don L. Anderson ◽  
Hartmut Spetzler

2012 ◽  
Vol 337-338 ◽  
pp. 25-38 ◽  
Author(s):  
Ralf T.J. Hansen ◽  
Michael G. Bostock ◽  
Nikolas I. Christensen

2021 ◽  
Author(s):  
JD Eccles ◽  
AK Gulley ◽  
PE Malin ◽  
CM Boese ◽  
John Townend ◽  
...  

© 2015. American Geophysical Union. All Rights Reserved. Fault Zone Guided Waves (FZGWs) have been observed for the first time within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Ongoing study of these phases provides the opportunity to monitor interseismic conditions in the fault zone. Distinctive dispersive seismic codas (~7-35Hz) have been recorded on shallow borehole seismometers installed within 20m of the principal slip zone. Near the central Alpine Fault, known for low background seismicity, FZGW-generating microseismic events are located beyond the catchment-scale partitioning of the fault indicating lateral connectivity of the low-velocity zone immediately below the near-surface segmentation. Initial modeling of the low-velocity zone indicates a waveguide width of 60-200m with a 10-40% reduction in S wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.


1979 ◽  
Vol 69 (2) ◽  
pp. 369-378
Author(s):  
George A. McMechan

abstract Plotting of three-dimensional ray surfaces in p-Δ-z space provides a means of determining p-Δ curves for any focal depth. A region of increasing velocity with depth is represented in p-Δ-z space by a trough, and a region of decreasing velocity, by a crest. Two sets of ray trajectories, the arrivals refracted outside a low-velocity zone, and the guided waves inside the zone, can be merged into a single set along the ray that splits into two at the top of the low-velocity zone. This ray is common to both sets. This construction provides continuity of the locus of ray turning points through the low-velocity zone and thus allows definition of p-Δ curves inside as well as outside the low-velocity zone.


1978 ◽  
Vol 41 (4) ◽  
pp. 670-683 ◽  
Author(s):  
P. J. Wyllie

1995 ◽  
Vol 32 (10) ◽  
pp. 1514-1519 ◽  
Author(s):  
John F. Cassidy

Receiver function analysis has proven to be a powerful, yet inexpensive tool for estimating the S-wave velocity structure of the crust and upper mantle beneath three-component seismograph stations in the southern Canadian Cordillera. Receiver function studies using a portable broadband seismograph array across southwestern British Columbia provided site-specific estimates for the location of the subducting Juan de Fuca plate. The oceanic crust was imaged at 47−53 km beneath central Vancouver Island, and 60–65 km beneath the Strait of Georgia. Further, these studies revealed a prominent low-velocity zone (VS = −1.0 km/s) that coincides with the E reflectors imaged ~5–10 km above the subducting plate on Lithoprobe reflection lines. The E low-velocity zone was shown to extend into the upper mantle beneath the Strait of Georgia and the British Columbia mainland, to depths of 50–60 km. Combining the receiver function and refraction models revealed a high Poisson's ratio (0.27–0.38) for this feature. The continental Moho was estimated at 36 km beneath the Strait of Georgia, and a crustal low-velocity zone associated with the Lithoprobe C reflectors beneath Vancouver Island was interpreted to extend eastward, near the base of the continental crust, to the British Columbia mainland. Analysis of data from the recently deployed Canadian National Seismograph Network demonstrates the variations in crustal thickness and complexity across the southern Canadian Cordillera, with the Moho depth varying from 35 km in the Coast Mountains, to 33 km near Penticton, to 50 km near the Rocky Mountain deformation front.


Sign in / Sign up

Export Citation Format

Share Document