An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando Earthquake Sequence

1984 ◽  
Vol 89 (B11) ◽  
pp. 9305 ◽  
Author(s):  
John W. Gephart ◽  
Donald W. Forsyth
1990 ◽  
Vol 172 (1-2) ◽  
pp. 121-134 ◽  
Author(s):  
M.C. Oncescu ◽  
C.I. Trifu ◽  
T. Hristova ◽  
S. Simeonova ◽  
D. Solakov

2014 ◽  
Vol 197 (1) ◽  
pp. 620-629 ◽  
Author(s):  
Yan Y. Kagan ◽  
David D. Jackson

1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


2021 ◽  
Author(s):  
Alberto Armigliato ◽  
Martina Zanetti ◽  
Stefano Tinti ◽  
Filippo Zaniboni ◽  
Glauco Gallotti ◽  
...  

<p>It is well known that for earthquake-generated tsunamis impacting near-field coastlines the focal mechanism, the position of the fault with respect to the coastline and the on fault slip distribution are key factors in determining the efficiency of the generation process and the distribution of the maximum run-up and inundation along the nearby coasts. The time needed to obtain the aforementioned information from the analysis of seismic records is usually too long compared to the time required to issue a timely tsunami warning/alert to the nearest coastlines. In the context of tsunami early warning systems, a big challenge is hence to be able to define 1) the relative position of the hypocenter and of the fault and 2) the earthquake focal mechanism, based only on the preliminary earthquake localization and magnitude estimation, which are made available by seismic networks soon after the earthquake occurs.</p><p>In this study, the intrinsic unpredictability of the position of the hypocenter on the fault plane is studied through a probabilistic approach based on the analysis of two finite fault model datasets (SRCMOD and USGS) and by limiting the analysis to moderate-to-large shallow earthquakes (Mw  6 and depth  50 km). After a proper homogenization procedure needed to define a common geometry for all samples in the two datasets, the hypocentral positions are fitted with different probability density functions (PDFs) separately in the along-dip and along-strike directions.</p><p>Regarding the focal mechanism determination, different approaches have been tested: the most successful is restricted to subduction-type earthquakes. It defines average values and uncertainties for strike, dip and rake angles based on a combination of a proper zonation of the main tsunamigenic subduction areas worldwide and of subduction zone geometries available from publicdatabases.</p><p>The general workflow that we propose can be schematically outlined as follows. Once an earthquake occurs and the magnitude and hypocentral solutions are made available by seismic networks, it is possible to assign the focal mechanism by selecting the characteristic values for strike, dip and rake of the zone where the hypocenter falls into. Fault length and width, as well as the slip distribution on the fault plane, are computed through regression laws against magnitude proposed by previous studies. The resulting rectangular fault plane can be discretized into a matrix of subfaults: the position of the center of each subfault can be considered as a “realization” of the hypocenter position, which can then be assigned a probability. In this way, we can define a number of earthquake fault scenarios, each of which is assigned a probability, and we can run tsunami numerical simulations for each scenario to quantify the classical observables, such as water elevation time series in selected offshore/coastal tide-gauges, flow depth, run-up, inundation distance. The final results can be provided as probabilistic distributions of the different observables.</p><p>The general approach, which is still in a proof-of-concept stage, is applied to the 16 September 2015 Illapel (Chile) tsunamigenic earthquake (Mw = 8.2). The comparison with the available tsunami observations is discussed with special attention devoted to the early-warning perspective.</p>


2021 ◽  
Author(s):  
Guido Maria Adinolfi ◽  
Raffaella De Matteis ◽  
Rita De Nardis ◽  
Aldo Zollo

Abstract. Improving the knowledge of seismogenic faults requires the integration of geological, seismological, and geophysical information. Among several analyses, the definition of earthquake focal mechanisms plays an essential role in providing information about the geometry of individual faults and the stress regime acting in a region. Fault plane solutions can be retrieved by several techniques operating in specific magnitude ranges, both in the time and frequency domain and using different data. For earthquakes of low magnitude, the limited number of available data and their uncertainties can compromise the stability of fault plane solutions. In this work, we propose a useful methodology to evaluate how well a seismic network used to monitor natural and/or induced micro-seismicity estimates focal mechanisms as function of magnitude, location, and kinematics of seismic source and consequently their reliability in defining seismotectonic models. To study the consistency of focal mechanism solutions, we use a Bayesian approach that jointly inverts the P/S long-period spectral-level ratios and the P polarities to infer the fault-plane solutions. We applied this methodology, by computing synthetic data, to the local seismic network operated in the Campania-Lucania Apennines (Southern Italy) to monitor the complex normal fault system activated during the Ms 6.9, 1980 earthquake. We demonstrate that the method we propose can have a double purpose. It can be a valid tool to design or to test the performance of local seismic networks and more generally it can be used to assign an absolute uncertainty to focal mechanism solutions fundamental for seismotectonic studies.


Sign in / Sign up

Export Citation Format

Share Document