Iceland geochemical anomaly: Origin, volcanotectonics, chemical fractionation and isotope evolution of the crust

1985 ◽  
Vol 90 (B12) ◽  
pp. 10011 ◽  
Author(s):  
N. Oskarsson ◽  
S. Steinthorsson ◽  
G. E. Sigvaldason
2007 ◽  
Vol 134 (1-3) ◽  
pp. 429-439 ◽  
Author(s):  
Ying Lu ◽  
Feng Zhu ◽  
Jie Chen ◽  
Haihua Gan ◽  
Yanbiao Guo

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 97
Author(s):  
Shamsunnahar Khushi ◽  
Angela A. Salim ◽  
Ahmed H. Elbanna ◽  
Laizuman Nahar ◽  
Robert J. Capon

Thorectandra choanoides (CMB-01889) was prioritized as a source of promising new chemistry from a library of 960 southern Australian marine sponge extracts, using a global natural products social (GNPS) molecular networking approach. The sponge was collected at a depth of 45 m. Chemical fractionation followed by detailed spectroscopic analysis led to the discovery of a new tryptophan-derived alkaloid, thorectandrin A (1), with the GNPS cluster revealing a halo of related alkaloids 1a–1n. In considering biosynthetic origins, we propose that Thorectandrachoanoides (CMB-01889) produces four well-known alkaloids, 6-bromo-1′,8-dihydroaplysinopsin (2), 6-bromoaplysinopsin (3), aplysinopsin (4), and 1′,8-dihydroaplysinopsin (10), all of which are susceptible to processing by a putative indoleamine 2,3-dioxygenase-like (IDO) enzyme to 1a–1n. Where the 1′,8-dihydroalkaloids 2 and 10 are fully transformed to stable ring-opened thorectandrins 1 and 1a–1b, and 1h–1j, respectively, the conjugated precursors 3 and 4 are transformed to highly reactive Michael acceptors that during extraction and handling undergo complete transformation to artifacts 1c–1g, and 1k–1n, respectively. Knowledge of the susceptibility of aplysinopsins as substrates for IDOs, and the relative reactivity of Michael acceptor transformation products, informs our understanding of the pharmaceutical potential of this vintage marine pharmacophore. For example, the cancer tissue specificity of IDOs could be exploited for an immunotherapeutic response, with aplysinopsins transforming in situ to Michael acceptor thorectandrins, which covalently bind and inhibit the enzyme.


1998 ◽  
Vol 64 (4) ◽  
pp. 1490-1496 ◽  
Author(s):  
P. R. Jensen ◽  
K. M. Jenkins ◽  
D. Porter ◽  
W. Fenical

ABSTRACT Significantly fewer thraustochytrid protists (zoosporic fungi) were observed in association with healthy leaf tissue of the marine angiosperm Thalassia testudinum than in association with sterilized samples that were returned to the collection site for 48 h. In support of the hypothesis that sea grass secondary metabolites were responsible for these differences, extracts of healthyT. testudinum leaf tissues inhibited the growth of the co-occurring thraustochytrid Schizochytrium aggregatum and deterred the attachment of S. aggregatum motile zoospores to an extract-impregnated substrate. By using S. aggregatumfor bioassay-guided chemical fractionation, a new flavone glycoside was isolated and structurally characterized as luteolin 7-O-β-d-glucopyranosyl-2"-sulfate. Whole-leaf tissue concentrations of this metabolite (4 mg/ml of wet leaf tissue) inhibited S. aggregatum attachment, and a significantly lower concentration (270 μg/ml) reduced thraustochytrid growth by 50%, suggesting that natural concentrations are at least 15 times greater than that needed for significant microbiological effects. These results offer the first complete chemical characterization of a sea grass sulfated flavone glycoside and provide evidence that a secondary metabolite chemically defends T. testudinum against fouling microorganisms.


RSC Advances ◽  
2014 ◽  
Vol 4 (45) ◽  
pp. 23658-23665 ◽  
Author(s):  
A. Nebbioso ◽  
A. Piccolo ◽  
M. Lamshöft ◽  
M. Spiteller

Humeomics encompasses step-wise chemical fractionation and instrumental determination to fully characterize the heterogeneous molecular composition of natural organic matter.


Author(s):  
Mischa Theis ◽  
Bengt-Johan Skrifvars ◽  
Mikko Hupa ◽  
Honghi Tran

Specified mixtures of peat with bark and peat with straw were burned in a lab-scale entrained flow reactor that simulates conditions in the superheater region of a biomass-fired boiler. Deposits were collected on an air-cooled probe that was inserted into the reactor at the outlet. For both mixtures, the deposition behaviour followed a non-linear pattern, which suggests that physico-chemical interaction between the ashes of the different fuels has taken place. The results indicate that it is possible to burn up to 30 wt-% bark (renewable biofuel and pulp mill waste) and up to 70 wt-% straw (renewable biofuel and agricultural waste) in mixtures with peat without encountering increased deposition rates in the reactor. The deposit composition was compared to the fuel ash composition using chemical fractionation analysis and SEM/EDX. While the composition of deposits obtained from pure fuels resembles the feed composition, a considerable change is observed in deposits obtained from mixtures. K and S compounds are attached to Si spheres and the substrate surface. The deposition rate is significantly lowered when removing K, S, Cl and Na in bark prior to burning by washing and mechanical/thermal dewatering.


Sign in / Sign up

Export Citation Format

Share Document