stable ring
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Henning Arlt ◽  
Xuewu Sui ◽  
Brayden Folger ◽  
Carson Adams ◽  
Xiao Chen ◽  
...  

Lipid droplets (LDs) form in the endoplasmic reticulum by phase separation of neutral lipids. This process is facilitated by the seipin protein complex, which consists of a ring of seipin monomers, with yet unclear function. Here, we report a structure of yeast seipin based on cryo-electron microscopy and structural modeling data. Seipin forms a decameric, cage-like structure with the lumenal domains forming a stable ring at the cage floor and transmembrane segments forming the cage sides and top. The transmembrane segments interact with adjacent monomers in two distinct, alternating conformations. These conformations result from changes in switch regions, located between the lumenal domains and the transmembrane segments, that are required for seipin function. Our data suggest a model for LD formation in which a closed seipin cage enables TG phase separation and subsequently switches to an open conformation to allow LD growth and budding.


2021 ◽  
Vol 25 ◽  
Author(s):  
Tanzeela Qadir ◽  
Andleeb Amin ◽  
Deeptanu Sarkar ◽  
Praveen Kumar Sharma

: Aziridines are the saturated three-membered cyclic amines that constitute an important group of synthetic intermediates. These could act as a precursor for diverse organic compounds owing to the reactivity due to the ring strain associated with them. The outstanding property of aziridines is their high reactivity towards various nucleophilic and electrophilic reagents to acquire more stable ring-opened or ring-expanded amines that could be obtained from the release of strain energy intrinsic in a small ring. As such, aziridines could be used in the synthesis of 4-7 membered heterocycles of biological and industrial significance, such as azetidines, imidazoles, thiazoles, pyrazines, pyrimidines, benzothiazines, benzodiazepines, etc. Earlier synthesis of aziridines was considered a laborious task due to their instability. However, various synthetic approaches leading to the formation of aziridines are now available in the literature. Recently, green, cost-effective and approaches based on simpler work-up for these reactions have attracted researcher's attention. This review article deals with synthetic routes of aziridines and aziridine applications in organic synthesis.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 97
Author(s):  
Shamsunnahar Khushi ◽  
Angela A. Salim ◽  
Ahmed H. Elbanna ◽  
Laizuman Nahar ◽  
Robert J. Capon

Thorectandra choanoides (CMB-01889) was prioritized as a source of promising new chemistry from a library of 960 southern Australian marine sponge extracts, using a global natural products social (GNPS) molecular networking approach. The sponge was collected at a depth of 45 m. Chemical fractionation followed by detailed spectroscopic analysis led to the discovery of a new tryptophan-derived alkaloid, thorectandrin A (1), with the GNPS cluster revealing a halo of related alkaloids 1a–1n. In considering biosynthetic origins, we propose that Thorectandrachoanoides (CMB-01889) produces four well-known alkaloids, 6-bromo-1′,8-dihydroaplysinopsin (2), 6-bromoaplysinopsin (3), aplysinopsin (4), and 1′,8-dihydroaplysinopsin (10), all of which are susceptible to processing by a putative indoleamine 2,3-dioxygenase-like (IDO) enzyme to 1a–1n. Where the 1′,8-dihydroalkaloids 2 and 10 are fully transformed to stable ring-opened thorectandrins 1 and 1a–1b, and 1h–1j, respectively, the conjugated precursors 3 and 4 are transformed to highly reactive Michael acceptors that during extraction and handling undergo complete transformation to artifacts 1c–1g, and 1k–1n, respectively. Knowledge of the susceptibility of aplysinopsins as substrates for IDOs, and the relative reactivity of Michael acceptor transformation products, informs our understanding of the pharmaceutical potential of this vintage marine pharmacophore. For example, the cancer tissue specificity of IDOs could be exploited for an immunotherapeutic response, with aplysinopsins transforming in situ to Michael acceptor thorectandrins, which covalently bind and inhibit the enzyme.


2021 ◽  
Author(s):  
Thomas Mardale Horsley Downie ◽  
Rex S C Charman ◽  
Jonathan W Hall ◽  
Mary F Mahon ◽  
John P Lowe ◽  
...  

Reaction of bis(pinacolato)diboron with (6-Dipp)CuOtBu generates a ring-expanded N-heterocyclic carbene supported copper(I) boryl, (6-Dipp)CuBpin. This compound showed remarkable stability and was characterised by NMR spectroscopy and X-ray crystallography. (6-Dipp)CuBpin readily...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kuhan Chandru ◽  
Tony Z. Jia ◽  
Irena Mamajanov ◽  
Niraja Bapat ◽  
H. James Cleaves

Abstract Prebiotic chemists often study how modern biopolymers, e.g., peptides and nucleic acids, could have originated in the primitive environment, though most contemporary biomonomers don’t spontaneously oligomerize under mild conditions without activation or catalysis. However, life may not have originated using the same monomeric components that it does presently. There may be numerous non-biological (or “xenobiological”) monomer types that were prebiotically abundant and capable of facile oligomerization and self-assembly. Many modern biopolymers degrade abiotically preferentially via processes which produce thermodynamically stable ring structures, e.g. diketopiperazines in the case of proteins and 2′, 3′-cyclic nucleotide monophosphates in the case of RNA. This weakness is overcome in modern biological systems by kinetic control, but this need not have been the case for primitive systems. We explored here the oligomerization of a structurally diverse set of prebiotically plausible xenobiological monomers, which can hydrolytically interconvert between cyclic and acyclic forms, alone or in the presence of glycine under moderate temperature drying conditions. These monomers included various lactones, lactams and a thiolactone, which varied markedly in their stability, propensity to oligomerize and apparent modes of initiation, and the oligomeric products of some of these formed self-organized microscopic structures which may be relevant to protocell formation.


2019 ◽  
Vol 44 (17) ◽  
pp. 4428
Author(s):  
A. López-Vázquez ◽  
Y. M. Torres ◽  
M. S. Billión ◽  
W. M. Pimenta ◽  
J. A. Franco-Villafañe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document