Vertical and areal distribution of Saharan dust over the western equatorial north Atlantic Ocean

1972 ◽  
Vol 77 (27) ◽  
pp. 5255-5265 ◽  
Author(s):  
Joseph M. Prospero ◽  
Toby N. Carlson
2020 ◽  
Author(s):  
Paul Wilson ◽  
Amy Jewell ◽  
Anya Crocker ◽  
Solana Buchanan ◽  
Bryce Mitsunaga ◽  
...  

<p>The Sahel region is one of the most vulnerable regions on Earth to anthropogenically-driven climate change, but also one of the least equipped to deal with the consequences. Predictions of precipitation levels over the forthcoming centuries diverge, not only in magnitude, but also in the sign of change. One key aspect of this uncertainty comes from the role of Atlantic Ocean sea surface temperatures (SST), which are known to exert a strong control over precipitation in the Sahel and are implicated in both the major drought of the late 20<sup>th</sup> century and extreme droughts associated with the Heinrich events of the last glacial. To better understand how Sahelian hydroclimate may respond to SST variability in a warmer world, we turn to the Pliocene epoch, when atmospheric CO<sub>2</sub> levels were comparable to present.</p><p> </p><p>We studied sediments from Ocean Drilling Project Site 659, which is situated in the subtropical North Atlantic beneath the major modern summer Saharan dust plume. Our new dust accumulation rates and X-ray fluorescence core scan data indicate that there were major shifts between highly arid conditions and humid intervals with vegetated or “Green Sahara” conditions over much of northern Africa, driven by both solar insolation and glacial-interglacial variability. We also report three unusually long Plio-Pliocene humid intervals (each lasting ca. 100 kyr) characterised by very low dust emissions, that we term “Green Sahara Megaperiods (GSMPs)”. All three of these GSMPs occur at times when insolation variability was weak, resulting in values close to the long-term mean. This observation strongly suggests that factors other than insolation drove the sustained humidity of GSMPs. We present paired alkenone SST estimates and multi-species planktonic foramaniferal isotope records from 3.5–2.3 Myr ago to explore the extent to which the GSMPs were accompanied by intervals of extended warmth in the surface waters of the North Atlantic Ocean.</p>


2018 ◽  
Author(s):  
Laura F. Korte ◽  
Franziska Pausch ◽  
Scarlett Trimborn ◽  
Corina P. D. Brussaard ◽  
Geert-Jan A. Brummer ◽  
...  

Abstract. Incubation experiments comprising Saharan dust additions were conducted in the tropical North Atlantic Ocean along an east-west transect at 12° N to study the phytoplankton response to nutrient release in oligotrophic seawater conditions. Experiments were performed at three stations (M1, M3, M4), mimicking wet and dry deposition of low and high amounts of Saharan dust deposition from two different dust sources (paleo-lake and sand dune). Dust particle sizes were adjusted to resemble dust that is naturally deposited over the ocean at the experiment sites. For wet dust deposition, the dust was pre-leached in acidified ‘artificial rainwater’ (H2SO4) for 16 to 24 hours, mimicking acid cloud processing at different pH values. Experiments were run up to eight days. Daily nutrient measurements of phosphate (PO43−), silicate (SiO44−), nitrate (NO3−) and cell abundances were performed in addition to measurements of concentrations of total dissolved iron (DFe), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) at the start and at the end of the experiments. A significant initial increase and subsequent gradual decrease in PO43−, SiO44− and DFe concentrations were observed after wet dust deposition using high amounts of dust previously leached in low pH rain (H2SO4, pH = 2). Remarkably, the experiments showed no nutrient release (PO43−, SiO44− and DFe) from dry-dust addition and the NO3− concentrations remained unaffected in all (dry and wet) experiments. The prokaryotic cyanobacterium Synechococcus spp. was the most prominent picophytoplankton in all mixed layer experiments. After an initial increase in cell abundance, a subsequent decrease (at M1) or a slight increase (at M3) with similar temporal dynamics was observed for dry and wet dust deposition experiments. The POC concentrations increased in all experiments and showed similar high values after both dry and wet dust deposition treatments, even though wet dust deposition is considered to have a higher potential to introduce bioavailable nutrients (i.e. PO43−, SiO44− and DFe) into the otherwise nutrient-starved oligotrophic ocean. Our observations suggest that such nutrients may be more likely to favor the growth of the phytoplankton community when an additional N-source is also available. In addition to acting as a fertilizer, our results from both dry and wet dust deposition experiments suggest that Saharan dust particles might be incorporated into marine snow aggregates leading to similar high POC concentrations.


2018 ◽  
Author(s):  
Laura F. Korte ◽  
Franziska Pausch ◽  
Scarlett Trimborn ◽  
Corina P. D. Brussaard ◽  
Geert-Jan A. Brummer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document