Observation by HF radar of the Phillips resonance mechanism for generation of wind waves

1980 ◽  
Vol 85 (C9) ◽  
pp. 4946 ◽  
Author(s):  
D. B. Trizna ◽  
R. W. Bogle ◽  
J. C. Moore ◽  
C. M. Howe
2020 ◽  
Vol 24 (1) ◽  
pp. 518-525
Author(s):  
Eshev S.S.– DSc ◽  
I.X. Gayimnazarov ◽  
А.R. Rakhimov ◽  
Latipov Sh. A

2020 ◽  
Vol 8 (8) ◽  
pp. 623
Author(s):  
Christian Kharif ◽  
Malek Abid

The generation of wind waves at the surface of a pre-existing underlying vertically sheared water flow of constant vorticity is considered. Emphasis is put on the role of the vorticity in water on wind-wave generation. The amplitude growth rate increases with the vorticity except for quite old waves. A limit to the wave energy growth is found in the case of negative vorticity, corresponding to the vanishing of the growth rate.


Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1105-1136 ◽  
Author(s):  
Emil V. Stanev ◽  
Johannes Schulz-Stellenfleth ◽  
Joanna Staneva ◽  
Sebastian Grayek ◽  
Sebastian Grashorn ◽  
...  

Abstract. This paper describes recent developments based on advances in coastal ocean forecasting in the fields of numerical modeling, data assimilation, and observational array design, exemplified by the Coastal Observing System for the North and Arctic Seas (COSYNA). The region of interest is the North and Baltic seas, and most of the coastal examples are for the German Bight. Several pre-operational applications are presented to demonstrate the outcome of using the best available science in coastal ocean predictions. The applications address the nonlinear behavior of the coastal ocean, which for the studied region is manifested by the tidal distortion and generation of shallow-water tides. Led by the motivation to maximize the benefits of the observations, this study focuses on the integration of observations and modeling using advanced statistical methods. Coastal and regional ocean forecasting systems do not operate in isolation but are linked, either weakly by using forcing data or interactively using two-way nesting or unstructured-grid models. Therefore, the problems of downscaling and upscaling are addressed, along with a discussion of the potential influence of the information from coastal observatories or coastal forecasting systems on the regional models. One example of coupling coarse-resolution regional models with a fine-resolution model interface in the area of straits connecting the North and Baltic seas using a two-way nesting method is presented. Illustrations from the assimilation of remote sensing, in situ and high-frequency (HF) radar data, the prediction of wind waves and storm surges, and possible applications to search and rescue operations are also presented. Concepts for seamless approaches to link coastal and regional forecasting systems are exemplified by the application of an unstructured-grid model for the Ems Estuary.


1967 ◽  
Vol 93 (1) ◽  
pp. 105-109
Author(s):  
Otakar W. Kabelac ◽  
Omar H. Shemdin ◽  
En Yun Hsu

1966 ◽  
Vol 92 (2) ◽  
pp. 1-26
Author(s):  
Robert L. Wiegel ◽  
Ralph H. Cross

Measurement ◽  
2018 ◽  
Vol 128 ◽  
pp. 446-454 ◽  
Author(s):  
Arianna Orasi ◽  
Marco Picone ◽  
Aldo Drago ◽  
Fulvio Capodici ◽  
Adam Gauci ◽  
...  
Keyword(s):  
Hf Radar ◽  

2016 ◽  
Author(s):  
Emil V. Stanev ◽  
Johannes Schulz-Stellenfleth ◽  
Joanna Staneva ◽  
Sebastian Grayek ◽  
Sebastian Grashorn ◽  
...  

Abstract. In the past years, the Helmholtz Zentrum Geesthacht put in place the Coastal Observing System for the North and Arctic Seas (COSYNA) in the frame of which different aspects of forecasting the marine environment have been developed. This paper describes these developments, which are based on recent advances in coastal ocean forecasting in the field of numerical modelling, data assimilation and observational array design. The region of interest is the North and Baltic Sea; most of the coastal examples discussed in the paper are for the German Bight. Several pre-operational applications are presented exemplifying the outcome of using the best available science in coastal ocean predictions. They help to identify new challenges; most of them are associated with resolving the non-linear behavior of coastal ocean, which for the studied region, is manifested by the tidal distortion and generation of shallow-water tides. Led by the motivation to maximize the benefit from observations, the authors focus on the integration of observations and modelling by using advanced statistical methods. The coastal and regional ocean forecasting systems do not run in isolation, but are linked, either weakly by just using forcing data, or interactively by using two-way nesting or unstructured-grid models. Therefore the problem of downscaling and upscaling, which currently attracts much attention, is also addressed. One example shown is the coupling of the coarse-resolution regional models by using a two-way nesting method with fine resolution in the area of connecting straits. The major part of the paper presents illustrations from assimilation of remote sensing, in situ and HF radar data, prediction of wind waves and storm surges, as well as possible applications to search and rescue operations, and modelling support for assessing the environmental impact of wind parks. Concepts for seamless approaches to link coastal and regional forecasting systems are also presented and the two examples given illustrate (1) an application of unstructured-grid model for the Ems Estuary, and (2) the potential influence of the information from coastal observatories or coastal forecasting systems on the regional models.


Sign in / Sign up

Export Citation Format

Share Document